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Abstract 

Background: Cases of dengue fever have increased in areas of Southeast Asia in recent years. Taiwan hit a record‑
high 42,856 cases in 2015, with the majority in southern Tainan and Kaohsiung Cities. Leveraging spatial statistics and 
geo‑visualization techniques, we aim to design an online analytical tool for local public health workers to prospec‑
tively identify ongoing hot spots of dengue fever weekly at the village level.

Methods: A total of 57,516 confirmed cases of dengue fever in 2014 and 2015 were obtained from the Taiwan Cent‑
ers for Disease Control (TCDC). Incorporating demographic information as covariates with cumulative cases (365 days) 
in a discrete Poisson model, we iteratively applied space–time scan statistics by SaTScan software to detect the 
currently active cluster of dengue fever (reported as relative risk) in each village of Tainan and Kaohsiung every week. 
A village with a relative risk >1 and p value <0.05 was identified as a dengue‑epidemic area. Assuming an ongoing 
transmission might continuously spread for two consecutive weeks, we estimated the sensitivity and specificity for 
detecting outbreaks by comparing the scan‑based classification (dengue‑epidemic vs. dengue‑free village) with the 
true cumulative case numbers from the TCDC’s surveillance statistics.

Results: Among the 1648 villages in Tainan and Kaohsiung, the overall sensitivity for detecting outbreaks increases 
as case numbers grow in a total of 92 weekly simulations. The specificity for detecting outbreaks behaves inversely, 
compared to the sensitivity. On average, the mean sensitivity and specificity of 2‑week hot spot detection were 0.615 
and 0.891 respectively (p value <0.001) for the covariate adjustment model, as the maximum spatial and temporal 
windows were specified as 50% of the total population at risk and 28 days. Dengue‑epidemic villages were visualized 
and explored in an interactive map.

Conclusions: We designed an online analytical tool for front‑line public health workers to prospectively detect ongo‑
ing dengue fever transmission on a weekly basis at the village level by using the routine surveillance data.
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Background
Cases of dengue fever (DF) have increased in areas of 
Southeast Asia in recent years. For example, Singapore 
has experienced increasing DF incidence over the past 
40 years [1]. Similarly, Taiwan suffered from its largest 

outbreak in 2014 [2], and the number of cases has hit a 
record-high 42,856 in 2015, with the majority in Tainan 
and Kaohsiung, two metropolitan areas in southern 
Taiwan.

According to Taiwan Centers for Disease Control 
(TCDC), insecticide spraying operations are carried out 
as the epidemic emergency-handling mechanism of DF 
[3]. To guide the implementation of insecticide spraying, 
an effective monitoring system is required to promptly 
report the progress of an epidemic and initiate a spraying 
plan in the targeted neighborhood [4].
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Scan statistics have proven to be useful in detect-
ing spatiotemporal clusters of diseases [5–7]. Although 
prospective scan statistics have been applied in detect-
ing ongoing transmission of malaria [8], shigellosis [9, 
10], and Campylobacter [5], what health workers might 
be interested in is the ability to relate existing hot spots 
to future infection [8, 11]. Taking DF as an example, 
since DF is an acute transmission disease, health work-
ers might not only want to identify the hot spots in week 
t, but also be interested in the duration of the identified 
hot spots, which is important for them to plan the insec-
ticide spraying campaign for the coming 1 (weekt+1) or 2 
(weekt+2) weeks. On the other hand, calibrating proper 
parameters such as spatial and temporal windows in scan 
statistics is difficult for non-expert users, and requires a 
process of model tuning. And few studies have ration-
alized the parameter specifications [7, 12]. Moreover, 
with the advance in online techniques and utilization 
of mobile phones, an online scan statistics tool might 
help public health workers detect ongoing transmission 
promptly, compared to the current desktop software.

To implement effective intervention, embedding an 
outbreak detection tool in a user-friendly platform is 
essential. Leveraging scan statistics and geo-visualization 
techniques, we aimed to design an online analytical tool 
for local public health workers to identify ongoing DF 
transmission at the village level using routine surveil-
lance data. Sensitivity and specificity analysis comparing 
the scan-based detections with the true results from the 
historical surveillance data were conducted in two cities 
of Taiwan. We look to gain insights that can guide and 
prioritize future insecticide spraying of DF prevention 
practices in the community.

Methods
Study area
The Tropic of Cancer cuts across Taiwan and divides 
this island into tropical and subtropical zones. Tainan 
and Kaohsiung, located south of the Tropic of Cancer, 
span 2191 and 2952  km2 respectively and include both 
urban and rural communities (Fig. 1). In 2015, the total 
population was 1.88 million in Tainan and 2.78 million in 
Kaohsiung.

Data
A confirmed DF case is defined as a person who resided 
in Tainan or Kaohsiung during January 1, 2014–Decem-
ber 31, 2015 and was infected by DF in Taiwan. The data-
sets of a total of 57,516 confirmed indigenous DF cases 
in the study areas were obtained from the Taiwan Open 
Data Platform (http://data.gov.tw/). Individual informa-
tion, such as age, date of onset, and x- and y-coordinates 
(centroid) of the affiliated basic statistical areas (BSAs) 

[13], was also included. Other demographic information, 
including age stratified population counts at the village 
level, was obtained from the Ministry of Interior, Taiwan 
(http://210.65.89.57/STAT/Web/Platform/STAT_Plat-
formHome.aspx).

Scan statistics
The free SaTScan software applies scan statistics [14] to 
compare the disease risk within and outside the scan-
ning window. The discrete Poisson model with no covari-
ate, which is the reference model in the study, assumes 
the expected number of cumulative DF cases in each vil-
lage is proportional to its population size. To incorporate 
demographic information in a discrete Poisson model, 
we replaced the raw population count with the expected 
number of 1-year cumulative cases (t0 ∼ weekt) at each 
village i in scan statistics. The expected number of cumu-
lative case for the covariate adjustment model was esti-
mated from the following Poisson regression:

where i indicates a village i in the study areas and t 
denotes week t during 2014–2015.

We assumed that the total population at risk at vil-
lage i and the proportion of working-age people (ages 
of 15–64) at village i were associated with the expected 
cumulative cases at each village i [15]. A space–time clus-
ter related to the proportion of working age in a village 
might be occurred due to the journey to work patterns.

The prospective space–time statistic, defined by a cylin-
drical window (Fig. 2) with a circular geographic base and 
with height corresponding to time (t0 ∼ weekt: 365 days 
in the study) [16], was executed weekly (the moving win-
dow approach) as if it had been performed in 2014–2015 
to assess the relative risk of DF in week t. The time inter-
val in this study is 1  week (7  days), and SaTScan uses 
Monte Carlo hypothesis testing to generate p values and 
recurrence intervals (1/p weeks) for villages with excess 
risk. We reported the first most likely cluster and second-
ary clusters if p value <0.05 with no geographical overlap.

Instead of arbitrary specification, we used a trial-and-
error approach to explore SaTScan’s parameters, includ-
ing the maximum spatial window (25 and 50% of the 
population at risk), the maximum temporal window (14 
and 28 days), and p values (<0.05 and <0.001). The initial 
value of 14 days for the temporal widow was based on the 
2-week extrinsic incubation period of DF [17, 18]. The 
effects of different combinations of parameters on cluster 
detection can be observed through the sensitivity analy-
sis. To routinely launch the program, we executed SaTS-
can from rsatscan, an R package (http://www.R-project.
org/) which runs SaTScan in the operating system.

log (cumulative caseit) = α + β1 population at riski

+ β2 working age proportioni

http://data.gov.tw/
http://210.65.89.57/STAT/Web/Platform/STAT_PlatformHome.aspx
http://210.65.89.57/STAT/Web/Platform/STAT_PlatformHome.aspx
http://www.R-project.org/
http://www.R-project.org/
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Sensitivity and specificity
We are interested in whether or not the cumulative 
case information of a village from t0 to weekt could 
be related to the risk of DF for two consecutive weeks 
weekt+1, weekt+2 (i.e., a 2-week threshold) based on 
scan statistics (Fig. 3). To evaluate our model, the follow-
ing steps were operated weekly (with a total of 92 itera-
tions) in the study.

Step 1 a village i with a relative risk >1 and p value <0.05 
(estimated from SaTScan) using DF cumulative counts 
from t0 to weekt was identified as a dengue-epidemic 
village (vs. a dengue-free village).
Step 2 we dichotomically classified the village i as 
dengue-epidemic (vs. dengue-free) if its cumulative 
case numbers during weekt+1 and weekt+2 were ≥1, 
according to TCDC’s historical DF surveillance statis-
tics.
Step 3 we estimated the sensitivity and specificity for 
detecting 2-week outbreaks in the study areas weekly 
by comparing the scan-based classification from the 
step (1) with the true classification from the step (2).

The sensitivity for detecting 2-week outbreaks in week t 
in the study is defined as:

The specificity for detecting 2-week outbreaks in week t 
in the study is defined as:

Both sensitivity and specificity range from 0 to 1. A 
higher sensitivity indicates that scan statistics precisely 
detect the 2-week outbreak of DF in village i. On the 
other hand, a greater specificity shows that scan statistics 
accurately indicate the absence of DF outbreak in village 
i for the next 2 weeks. A sensitivity analysis examining a 
strict detection duration threshold (ongoing transmission 
only extending to the next week) was also conducted.

Web GIS (Geographical information system)
An online analytical platform, powered by PHP (version 
5.5), JavaScript (OpenLayers and Highcharts libraries), 
and HTML, provided an interactive interface for users 
to manipulate relevant parameters of scan statistics and 
visualize the weekly relative risk of DF at the village level 

Sensitivity
t

=
# of dengue-epidemic villages identifed by SaTScan in weekt

# of villages in weekt+1,t+2 where case ≥ 1

Specificity
t

=
# of dengue-free villages identifed by SaTScan in weekt

# of villages in weekt+1,t+2 where case = 0

Fig. 1 The study areas: Tainan and Kaohsiung, Taiwan
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(Fig. 4). First, SaTScan-related parameters, like the maxi-
mum spatial size in the total population at risk, were 
passed to R through PHP for each simulation. Second, 
we executed R’s rsatscan package in batch mode via PHP. 
Third, the SaTScan estimates, like the relative risk of DF 
in each village, were passed to JavaScript by PHP. Finally, 
line charts, tables, and maps were visualized via HTML 
and JavaScript libraries. The web service is available at 
http://scan.geohealth.tw (Fig. 5).

Results
To prospectively detect the ongoing transmission of DF at 
the village level, we used the confirmed indigenous den-
gue cases (n = 57,516) in Tainan and Kaohsiung between 

January 1, 2014 and December 31, 2015 (Table 1). There 
are a total of 752 and 891 villages in Tainan and in Kaoh-
siung, respectively (Fig.  1). Overall, the average popula-
tion density is around 9655 inhabitants/km2 in the study 
areas.

As the epidemic curve illustrates (Fig. 6), the outbreak 
of DF started in the 70th week and peaked in the 75th 
week in Tainan. For Kaohsiung, we observed two peaks of 
DF epidemic, climaxing in the 30th week and 84th week 
(Fig.  7). To evaluate the detection capability, different 
model specifications (reference against covariate adjust-
ment), percentages of the total population at risk (the 
maximum spatial window), and lengths of the maximum 
temporal window were manipulated in SaTScan (Tables 2, 

Fig. 2 Design of the study: the moving window approach to prospectively detect spatiotemporal hotspots

Fig. 3 Flowchart of the study

http://scan.geohealth.tw
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3). Overall, the sensitivity for outbreak detection increases 
as the number of cases grows. However, an inverse rela-
tionship is identified between sensitivity and specificity 
during an epidemic (Figs. 6, 7). On average, the sensitiv-
ity and specificity for outbreak detection given a weekly 
number of cases ≥500 are around 0.569 and 0.982 respec-
tively, as the maximum spatial and temporal windows 
were set to 50% of the total population at risk and 28 days 
respectively in Tainan for the covariate adjustment model 
with p value <0.001 (recurrence interval =  1000  weeks) 
(Fig. 6). Correspondingly, the mean sensitivity and speci-
ficity of detections are around 0.661 and 0.800 respec-
tively for the counterpart of Kaohsiung (Fig. 7).

Regarding the maximum spatial and temporal win-
dows, we found that the mean sensitivity for detect-
ing outbreaks rises in Kaohsiung but falls in Tainan as 
the combination of the maximum spatial and temporal 
parameters varies from {25%, 14 days} to {50%, 28 days} 
(Table  2). The cost is the rise in computation time for 
the total 92 iterations (Table  2). On the other hand, as 
the values of parameter combinations increase (Table 3), 
the specificity for detecting outbreaks increases in both 
areas.

Regarding the sensitivity analysis on the detection 
duration threshold (Table 2), we found that compared to 
the 2-week threshold, the mean sensitivity for detecting 
1-week outbreaks slightly increases in both Tainan and 
Kaohsiung. In contrast, the mean specificity for detect-
ing 1-week outbreaks decreases, in comparison to the 
2-week threshold (Table  3). In addition, the mean val-
ues of sensitivity and specificity slightly decrease and 

increase respectively given p value <0.001, compared to 
p value <0.05 (Tables 2, 3). However, the patterns among 
different parameter combinations are similar, given the 
different level of p value.

Discussion
Analyzing the routine DF surveillance data from Tainan 
and Kaohsiung throughout 2014–2015, we leveraged 
scan statistics and web GIS techniques to design an 
online analytical tool for local public health workers 
to promptly monitor the progress of DF and facilitate 
weekly detection of ongoing transmission at the village 
level as it had been performed in 2014–2015. Overall, the 
sensitivity for detecting outbreaks fluctuates dramatically 
in the beginning and at the end of a DF epidemic, while 
the specificity of detection behaved inversely (Figs. 6, 7).

Spatial and temporal windows are two major param-
eters when specifying space–time scan statistics for DF 
cluster detection [7, 13–15]. The calibration of param-
eters depends on the complicated interaction between 
vectors and human beings and therefore requires a pro-
cess of trial and error. Concerning the temporal win-
dow, we found that setting the maximum window from 
2  weeks to one month (14–28  days) might be a proper 
choice based on the existing knowledge of the extrinsic 
and intrinsic incubation periods of DF [19]. On the other 
hand, in the absence of DF transmission dynamics infor-
mation [20] in the study areas, 50% spatial window would 
be a reasonable maximum.

Our findings further reveal that an adaptive param-
eter specification would improve the detection accuracy 

Fig. 4 Online platform design
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of space–time scan statistics as the disease advanced. 
A relative large spatial and temporal windows in which 
more cases were included in the early stage of disease 
was reasonable since the outbreak of DF was local and 
sporadic at that moment [21]. In contrast, we would like 
to shrink both spatial and temporal parameters when the 
epidemic moves to peak so as to avoid too many false 
warnings (Figs.  6, 7). Compared to the reference, our 
covariate adjustment model marginally improves the 
detection accuracy of sensitivity in Kaohsiung. But the 
adjusted model (working-age proportion) didn’t work as 
we expect in Tainan. Whether or not this phenomena is 
attributed to the different effect on commuting flow pat-
terns between Tainan and Kaohsiung is warranted fur-
ther study.

Although SaTScan provides geo-referenced files for 
visualizing hot spots in a GIS platform like ArcGIS (ESRI, 
Redlands, CA, USA), we integrated the web GIS function 
into our platform to facilitate visualization in one plat-
form (Fig. 5). In addition, users might explore the possi-
ble range of scan statistics parameters interactively and 
intuitively via the Internet.

This is the first study to apply spatiotemporal scan 
statistics to prospectively detect DF outbreaks in 
two major cities of Taiwan. Increased globalization 
and global warming have been reported to increase 
DF transmission [22]. The densely populated South-
east Asia region is particularly vulnerable to vector-
borne diseases such as DF [23] and the recent Zika 
virus [24]. We have demonstrated the possibility of 
detecting vector-borne diseases at the village level 
on a weekly basis with the minimum data require-
ment. The method we developed and the web-based 
tool we created might help local public health workers 
quickly respond to outbreaks and implement insecti-
cide spraying in the targeted neighborhoods on time 
in countries or areas prone to DF and Zika. The find-
ings might be a reference for other vector-borne dis-
eases like malaria.

This study has serval limitations. First, our model 
didn’t consider the true commuting flow patterns due 
to data unavailability at the village level [25]. Sec-
ond, as mentioned before, the scan statistics param-
eters are context dependent, and the estimated range 

Fig. 5 Online platform snapshot (http://scan.geohealth.tw)

Table 1 Description of indigenous dengue fever cases dur-
ing 1/1/2014–12/31/2015 in Tainan and Kaohsiung, Taiwan

Case numbers  
in Tainan (%)

Case numbers 
in Kaohsiung (%)

Sex

 Male 11,367 (49.6) 17,187 (49.6)

 Female 11,509 (50.4) 17,453 (50.4)

Age

 0–14 1786 (7.8) 2909 (8.4)

 15–64 16,305 (71.2) 25,392 (73.3)

 ≥65 4785 (21.0) 6339 (18.3)

Total 22,876 (100.0) 34,640 (100.0)

http://scan.geohealth.tw
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Fig. 6 Sensitivity and specificity for outbreak detection in Tainan, Taiwan with the covariate adjustment model (maximum spatial window = 50% of 
the total population at risk; maximum temporal window = 28 days; p value <0.001; detection duration threshold = 2 weeks)

Fig. 7 Sensitivity and specificity for outbreak detection in Kaohsiung, Taiwan with the covariate adjustment model (maximum spatial win‑
dow = 50% of the total population at risk; maximum temporal window = 28 days; p value <0.001; detection duration threshold = 2 weeks)

of parameters in the study might not be applicable to 
cities outside Tainan and Kaohsiung, Taiwan. Third, 
this study was conducted on retrospectively collected 

data, and one might encounter problems like data 
lags or poor data quality in a real-time surveillance 
situation.
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Conclusions
Using the DF epidemic data of Tainan and Kaohsiung during 
2014–2015 as an example, we designed an online scan sta-
tistics tool to prospectively detect active DF hot spots. The 
online scan statistics tool embedding a user-friendly inter-
face and a covariate adjustment model might assist public 

health works in countries with similar settings in identifying 
ongoing vector-borne epidemics for targeted interventions.

Abbreviations
BSA: basic statistical areas; DF: dengue fever; HTML: hypertext markup lan‑
guage; PHP: hypertext preprocessor; TCDC: Taiwan Centers for Disease Control.

Table 2 Sensitivity analysis of parameters (spatial/temporal/p value) by location as the number of cases ≥500 per week

a Testing environment: Windows Server 2012; Intel Xeon E5-2630 v3 @ 2.4 GHz 4 cores; RAM = 32 GB

Model Detection duration  
threshold (weeks)

Spatial (%)/temporal  
(days)/p value

Mean sensitivity (total elapsed timea (s))

Tainan Kaohsiung

Reference 2 (25, 14, 0.05) 0.680 (490.10) 0.631 (750.64)

(50, 28, 0.05) 0.580 (1123.61) 0.652 (1305.84)

(25, 14, 0.001) 0.662 (472.80) 0.626 (745.11)

(50, 28, 0.001) 0.578 (1139.66) 0.652 (1196.82)

1 (25, 14, 0.05) 0.705 (453.06) 0.656 (770.58)

(50, 28, 0.05) 0.656 (1077.49) 0.690 (1221.14)

(25, 14, 0.001) 0.689 (479.27) 0.651 (730.03)

(50, 28, 0.001) 0.654 (1079.73) 0.690 (1262.36)

Covariate adjustment 2 (25, 14, 0.05) 0.636 (481.78) 0.629 (777.33)

(50, 28, 0.05) 0.568 (1221.47) 0.661 (1251.64)

(25, 14, 0.001) 0.618 (507.71) 0.629 (745.58)

(50, 28, 0.001) 0.569 (1154.70) 0.661 (1223.97)

1 (25, 14, 0.05) 0.678 (513.56) 0.655 (729.69)

(50, 28, 0.05) 0.645 (1023.12) 0.701 (1365.97)

(25, 14, 0.001) 0.661 (494.28) 0.654 (743.39)

(50, 28, 0.001) 0.644 (1080.50) 0.701 (1296.22)

Table 3 Specificity analysis of parameters (spatial/temporal/p value) by location as the number of cases ≥500 per week

Model Detection duration  
threshold (weeks)

Spatial (%)/temporal  
(days)/p value

Mean specificity

Tainan Kaohsiung

Reference 2 (25, 14, 0.05) 0.597 0.714

(50, 28, 0.05) 0.980 0.785

(25, 14, 0.001) 0.619 0.718

(50, 28, 0.001) 0.981 0.785

1 (25, 14, 0.05) 0.573 0.657

(50, 28, 0.05) 0.957 0.721

(25, 14, 0.001) 0.596 0.662

(50, 28, 0.001) 0.959 0.721

Covariate adjustment 2 (25, 14, 0.05) 0.736 0.651

(50, 28, 0.05) 0.982 0.800

(25, 14, 0.001) 0.755 0.652

(50, 28, 0.001) 0.982 0.800

1 (25, 14, 0.05) 0.713 0.610

(50, 28, 0.05) 0.961 0.733

(25, 14, 0.001) 0.732 0.611

(50, 28, 0.001) 0.961 0.733
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