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Abstract 

Background: Tick populations and tick‑borne infections have steadily increased since the mid‑1990s posing an 
ever‑increasing risk to public health. Yet, modelling tick dynamics remains challenging because of the lack of data 
and knowledge on this complex phenomenon. Here we present an approach to model and map tick dynamics using 
volunteered data. This approach is illustrated with 9 years of data collected by a group of trained volunteers who 
sampled active questing ticks (AQT) on a monthly basis and for 15 locations in the Netherlands. We aimed at finding 
the main environmental drivers of AQT at multiple time‑scales, and to devise daily AQT maps at the national level for 
2014.

Method: Tick dynamics is a complex ecological problem driven by biotic (e.g. pathogens, wildlife, humans) and abi‑
otic (e.g. weather, landscape) factors. We enriched the volunteered AQT collection with six types of weather variables 
(aggregated at 11 temporal scales), three types of satellite‑derived vegetation indices, land cover, and mast years. 
Then, we applied a feature engineering process to derive a set of 101 features to characterize the conditions that 
yielded a particular count of AQT on a date and location. To devise models predicting the AQT, we use a time‑aware 
Random Forest regression method, which is suitable to find non‑linear relationships in complex ecological problems, 
and provides an estimation of the most important features to predict the AQT.

Results: We trained a model capable of fitting AQT with reduced statistical metrics. The multi‑temporal study on the 
feature importance indicates that variables linked to water levels in the atmosphere (i.e. evapotranspiration, relative 
humidity) consistently showed a higher explanatory power than previous works using temperature. As a product of 
this study, we are able of mapping daily tick dynamics at the national level.

Conclusions: This study paves the way towards the design of new applications in the fields of environmental 
research, nature management, and public health. It also illustrates how Citizen Science initiatives produce geospa‑
tial data collections that can support scientific analysis, thus enabling the monitoring of complex environmental 
phenomena.

Keywords: Tick dynamics, Random forest, Volunteered geographic information (VGI), Data analysis, Environmental 
modelling
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Background
Tick populations and tick-borne infections like Lyme 
borreliosis have steadily increased since the mid-1990s. 
This concurrent increase has been observed in various 
European countries [19, 23], in the US [48] and in Canada 

[31]. In the Netherlands, periodic national studies among 
general practitioners (GPs), revealed a consistent two-
decade rising trend in the number of tick bites consul-
tations and Lyme borreliosis diagnoses [22], that only 
showed a first sign of stabilization recently. Still, more 
than 20,000 people per year develop Lyme borreliosis 
in the Netherlands and its disease burden is substantial, 
especially in patients who develop chronical symptoms 
[21].
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Scientists of different fields have investigated this global 
increase of tick populations and tick-borne infections, 
converging upon two main causes: global environmen-
tal changes are altering the spatio-temporal dynamics of 
ticks [29, 47] and socio-economic changes are changing 
the spatial patterns of human populations around urban-
ized areas, increasing the human exposure to ticks [38, 
40, 53]. Tick dynamics are complex ecological processes 
driven by numerous factors (i.e. wildlife, weather, vegeta-
tion, landscape). Understanding the interactions between 
these factors and tick dynamics is crucial to develop 
models capable of forecasting the incidence and distribu-
tion of ticks and tick-borne diseases [12, 33].

Models predicting the spatio-temporal distribution of 
ticks are needed to implement control measures which 
mitigate future disease infections [9, 18] or help manag-
ing public health risks [29]. However, the development of 
such models is not straightforward due to several issues. 
First, it is unclear what the best set of environmen-
tal predictors are. Past studies have found correlations 
between different combinations of biotic and abiotic 
factors and tick dynamics, but the spatio-temporal scale 
of these experiments is diverse enough to pose difficul-
ties in drawing general conclusions. For instance, Berger 
et al. [2, 3] found a link between relative humidity and the 
seasonal abundance of ticks at the regional level. Dantas-
Torres and Otranto [10] found weak correlations at local 
scale between monthly temperature, evapotranspiration 
and saturation deficit with tick abundances, whereas [42] 
found links (in laboratory conditions) between the satu-
ration deficit and the number of questing ticks. Second, 
it is often unclear at what time scales the different pre-
dictors operate. Previous studies have found linear cor-
relations between tick abundances and environmental 
predictors at multiple temporal scales [2, 3, 50]. How-
ever, the temporal sparsity of the tick sampling or the 
use of short-term time series question if these correla-
tions are scalable to long-term time series at the country 
level. Third, tick dynamics are complex phenomena that 
traditionally have been modelled with linear methods. 
Two of the well-known disadvantages of classical linear 
methods is that they are not capable of finding non-lin-
ear interactions between variables (except when explic-
itly included a priori), and do not properly handle large 
numbers of predictors (e.g. due to collinearity). However, 
such data are a reality when modelling complex natural 
phenomena.

In this work, we address the above-mentioned issues by 
modelling nine years of monthly data on Active Quest-
ing Ticks (AQT) collected by volunteers on 15 different 
locations in the Netherlands. This modelling exercise 
includes a wide array of (a) biotic predictors and, by 
applying an ensemble regression method (i.e. random 

forest), we aim at identifying the most important vari-
ables to model AQT at multiple time-scales. Building 
such AQT dynamic model allows us to explore and map 
tick’s seasonality across the Netherlands. We envision 
applications of this model in the fields of environmental 
and ecological research, nature management and public 
health, which hopefully will reduce the incidence of Lyme 
disease.

Ticks and environment
Tick sampling
Ticks are blood sucking arthropods capable of transmit-
ting a wide variety of pathogens (e.g. bacteria, viruses) 
which cause disease in humans [19]. Deciduous or mixed 
forests in temperate and humid regions, which are inhab-
ited by different mammalian species (e.g. deer, rodents), 
create optimal habitats sustaining ticks life cycle [33]. 
Ticks quest at the top of vegetation or litter layer, wait-
ing for a human or animal host to attach and feed. This 
behavior is used to determine tick populations in a par-
ticular location. To do so, two manual monitoring tech-
niques are used: flagging and dragging. Flagging consists 
on sweeping a squared cloth attached to a pole on one 
side upon the litter or vegetation layers, whereas drag-
ging consists in attaching the previous material to a rope, 
which the investigator can pull along the study area [45]. 
In both cases, ticks that are touched by the cloth attach 
to it, allowing researchers to count the number of ticks in 
its different life stages (i.e. larvae, nymph, or adult). Both 
techniques have been widely used in small scale biologi-
cal studies to acquire raw data on tick counts that can be 
later incorporated in a scientific workflow [10, 11, 13, 15, 
41].

Environmental factors
Ticks are particularly susceptible to environmental con-
ditions because of their high surface-to-volume ratio, 
which makes them experience water losses through their 
exoskeleton, and their lack of thermal inertia, which 
makes them vulnerable to extreme weather conditions 
[33]. The following sub sections list the environmental 
variables used in our work and sketch their impact on 
tick dynamics.

Weather data
Temperature determines the start of the questing sea-
son, tick population development rate and the chances 
of survival through the winter season [32, 40, 52]. Pre-
cipitation and relative humidity are crucial to sustain 
tick populations in nature. Precipitation is necessary 
during the summer season [25], but extreme precipita-
tion events (i.e. drought and heavy rain) may prevent the 
development of new tick populations [33]. Long-lasting 
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and adverse humidity conditions have been linked to an 
increased mortality among nymphal ticks and this, in 
turn, may decrease the total number of cases of Lyme 
disease [2, 3]. Some studies suggest that nymphal ticks 
can desiccate within 48  h if the humidity conditions at 
ground level are suboptimal [2, 3]. Additionally, relative 
humidity and temperature can be used to calculate the 
saturation deficit and vapor pressure. Saturation deficit 
has been used in a previous and thorough study to under-
stand the role of humidity in tick survival [42] and vapor 
pressure has been identified as a major indicator of tick 
habitat suitability [8]. In some studies, evapotranspira-
tion has been used as a proxy for vapor pressure deficit 
[44].

Weather datasets are publicly available at the online 
data center of the Royal Netherlands Meteorological 
Institute (KNMI).1 We downloaded daily gridded layers 
of temperature, precipitation, evapotranspiration and rel-
ative humidity for the period 2005–2014. From tempera-
ture and relative humidity, we obtained saturation deficit 
and vapour pressure [30, 42]. The temporal resolution of 
the weather datasets and the tick sampling is different, 
since the former are available at daily temporal resolu-
tion, whereas the latter is carried out on a unique day 
each month. To match both resolutions, it is necessary to 
aggregate the weather variables to a coarser temporal 
scale in a way that reflect the impact later caused on the 
tick count.

Vegetation data from satellites
Ticks are sensitive to local environmental conditions, 
such as the thickness of forest canopy or soil moisture at 
the ground level [29]. Earth observation satellites allow 
the monitoring of these environmental conditions over 
large areas. In this work, we used three vegetation indi-
ces to characterize local environmental conditions: the 
Normalized Difference Vegetation Index (NDVI), the 
Enhanced Vegetation Index (EVI) and the Normalized 
Difference Water Index (NDWI). Previous studies have 
demonstrated that fluctuations in NDVI, which has tradi-
tionally been used to measure the greenness and the den-
sity of vegetation, correlate well with fluctuations in the 
number of nymphs and adult ticks and that NDVI can 
be used as a proxy to find suitable tick habitats [11, 39]. 
More recent studies show that novel vegetation indices 
like EVI or NDWI are better estimators of tick popula-
tions [1] and Lyme disease incidence [37].

Vegetation indices are publicly available in the Google 
Earth Engine (GEE) platform.2,3 GEE is a free image pro-

1 https://data.knmi.nl/datasets.
2 https://code.earthengine.google.com/.
3 https://earthengine.google.com/.

cessing cloud platform for environmental analysis, which 
aggregates and integrates products coming from different 
Earth observation sensors, such as the Moderate-Resolu-
tion Imaging Spectroradiometer (MODIS). MODIS pro-
vides daily global imagery at 250, 500 and 1000  m of 
spatial resolution. However, due to the persistent cloud 
coverage over the Netherlands we used MODIS compos-
ite products. In particular, we used the MCD43A4 prod-
uct, which provides the NDVI, EVI and NDWI indices 
derived from the daily surface reflectance at a pixel size 
of 500 m, using data of the previous 16 days. It is impor-
tant to note that this product is released every 8 days, so 
there is a 50% of temporal overlap between each compos-
ite, meaning that the vegetation signal will contain 
smooth changes.

Land cover, tick habitat and mast years
Land cover is another important factor in the field of tick 
ecology because it influences tick survival and deter-
mines the chances of human-tick contact. Ticks prefer 
habitats where the vegetation prevents reaching desicca-
tion conditions and where hosts (e.g. deer, rodents, mice) 
species are present. Complex landscapes, in which multi-
ple land covers are intertwined in a small area unit, 
increase the probability of contact between ticks and 
their human or animal hosts [17, 26, 27, 51]. For land 
cover we use the 7th release of the national land cover 
database or LGN (Landelijk Grondgebruik Nederland4). 
This database was produced in 2012 and contains infor-
mation for 39 classes at 25 m.

The sampling sites are located in forested areas with 
specific types of vegetation (i.e. deciduous and coniferous 
forest, grasses, and bushlands). The plant associations in 
these sites contribute determining the presence of wild-
life species in each location, by providing forage or shel-
ter, and subsequently, tick populations move with them. 
Previous studies have demonstrated that deciduous for-
ests present higher abundances of AQT than coniferous 
forest, and also that a dense shrub layer has a positive 
effect on tick populations [49]. Gassner et  al. [15] gives 
a thorough description of the plant associations and 
habitat characteristics found in the surroundings of each 
transect of the flagging sites.

Mast seeding is a natural phenomenon in which cer-
tain plant species synchronously produce an abnormal 
amount of acorns and nuts [46]. This overproduction 
feeds a wide range of animal species and contributes to 
a steep increase of their populations for the next season. 
When the populations of rodents, deer and other tick 
host species increase, the same occurs with tick popu-
lations [34, 36]. Dutch volunteers from the Mammal 

4 http://tinyurl.com/j47m2ol.

https://data.knmi.nl/datasets
https://code.earthengine.google.com/
https://earthengine.google.com/
http://tinyurl.com/j47m2ol
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Association (http://www.zoogdiervereniging.nl) quantify 
each year the amount of acorns produced for beech, oak 
and American oak. The amount of acorns is classified in a 
categorical scale that goes from 0 to 5 depending on how 
strong the mast year.

Data
This work relies on a unique dataset of tick dynamics col-
lected by volunteers in the context of a project of partici-
patory modelling. This dataset was enriched with a set 
of environmental variables extracted for each sampling 
location. For this, we collected and preprocessed weather 
and satellite data, and included biological data regarding 
habitat and mast years. The remaining of this section first 
contains a description of the volunteered tick counts data 
(“Volunteered tick counts reports” section), and then we 
explain the process of feature engineering carried out to 
create a series of predictors that characterize tick dynam-
ics as monitored by volunteers.

Volunteered tick counts reports
In the context of the Dutch phenological network 
Nature’s Calendar (www.natuurkalender.nl) every month 

since July 2006, a group of volunteers sampled AQT on 
24 forest sites. This joint effort aimed to quantify and 
understand the spatial and temporal dynamics of ticks 
and the Borrelia bacteria that can cause Lyme disease 
[15]. Out of the 24 sites participating in the research pro-
ject, we were able to include data from 15 sites, which 
represent a total of 3073 observations collected by vol-
unteers. We excluded the sites in which the sampling 
stopped in an early stage of the project, or the site was 
sparsely sampled in time. At each site, volunteers sam-
pled two transects, separated from each other several 
hundred meters. Ticks were collected using a technique 
called “dragging”, in which the volunteer drags a 1  m2 
cloth over the low vegetation of each transect for 100 m, 
turning the cloth every 25 m to count the number of lar-
vae, nymphs and adult ticks. This study focuses on the 
nymphs because they pose the highest risk for humans to 
get a tick bite. Figure 1 shows the raw number of nymphs 
per transect and per month. The number of AQT across 
all sites present strong spatial and temporal variations: 
(1) some transects present a more continuous and recur-
rent shape, whereas others have an erratic tick count (e.g. 
Gieten vs. Bilthoven); (2) some transects produce very 

Fig. 1 Monthly time‑series (2006–2014) of active questing ticks (AQT) per transect. Each subplot shows both the number of ticks counted by the 
volunteer (red) and the Savizky‑Golay smoothed version of this signal (blue)

http://www.zoogdiervereniging.nl
http://www.natuurkalender.nl
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different yields, from low tick counts to high peaks (e.g. 
Veldhoven vs. Eijsden); (3) transects within a sampling 
site may yield a different number of ticks, even though 
they are close in space and sampled on the same day (e.g. 
Montferland). The reasons of these strong local and sea-
sonal variations are still poorly understood, but previous 
works have found clear links between tick populations 
and the abundance of small mammals in the area [35], 
mast years [24] or warming weather conditions [25, 48], 
which are major influences over tick dynamics, as seen in 
“Environmental factors” section.

Volunteered projects have proved useful to acquire 
information at a timely and fine spatial scale, but the 
quality and the amount of uncertainty of such data col-
lections is difficult to measure [4, 5, 16]. A visual inspec-
tion of Fig.  1 shows that the monthly tick counts signal 
presents an irregular and noisy shape. A closer descrip-
tive analysis of the raw data reveals that out of 3073 
records in the dataset, around one-third of the samples 
are zeros, and a small proportion of samples present high 
peaks. Zero AQT means that a volunteer visited a site 
for tick sampling on a particular date and no ticks were 
caught questing, whereas a peaky AQT means the ticks 
were very active on that day.

To assess the potential impact that zero and peaky 
AQT may have in our modelling process, we created 
four versions of the original dataset, which vary in the 
amount of zeroes and peaky observations. In two data-
sets we removed all samples with a zero AQT within the 
tick season (i.e. 1st March until 31st October) and half 
of the samples with a zero AQT outside the season. This 
creates a group with two datasets with a reduced amount 
of zeros, and a second group with two datasets which are 
not modified with respect to the original. After this step, 
we applied a smoothing process to only one of the data-
sets of each group. We chose a Savitzky–Golay filter to 
mitigate the effect of peaky AQT in the modelling pro-
cess, whereas the other dataset was kept with the original 
AQT signal. In this way, the modelling process accounts 
for the possible effect of extreme observations to fit the 
AQT signal, and helps distinguishing whether varying 
levels of noise is hampering the learning process of the 
chosen modelling algorithm.

Characterizing the environment
Feature engineering is a common process in the machine 
learning field to obtain new predictors from original data 
sources, which incorporate the knowledge of a domain to 
create predictive models. In our case, we obtained a set 
of features, based in the theoretical grounds described 
in “Tick sampling” and “Environmental factors” sec-
tions, which aim to that aim to characterize the environ-
mental conditions in each tick sampling site. Thus, this 

work uses 101 features (Table  1) classified in five types: 
weather, remote-sensed vegetation, land cover, habi-
tat and mast. Weather and vegetation features contain a 
value aggregated in a particular time window. Land cover, 
habitat and mast features contain the value of land cover 
in a point, the type of tick habitat in the sampling sites, 
and the strength of a mast year for three tree species, 
respectively. The remaining of this section describes how 
the features associated to each type were obtained from 
the original data sources.

Because of the lack of consensus in the literature on 
the optimal temporal unit(s) to model AQT, we created 
a suite of features by aggregating each weather variable 
(i.e. minimum and maximum temperature, precipita-
tion, evapotranspiration, relative humidity, saturation 
deficit, and vapour pressure deficit) at multiple temporal 
scales. These temporal scales are defined by the number 
of days before the date of the tick sampling. The reason 
for doing this is straightforward: we assume the tick 
count produced today, depends on past weather condi-
tions. Therefore, for each tick sampling date we calcu-
lated weather features using a range of 1–7  days before 
the sampling date (i.e. fine temporal units), and of 14, 30, 
90 and 365 days (i.e. coarse temporal units). This proce-
dure leads to 11 features per weather variable, adding up 
a total of 77 features (indices 16–92, type W).

Using GEE, we averaged the 3–4 images available per 
month to reduce the impact of clouds. Then, using the 
coordinates of each of the flagging sites, we obtained 
three (NDVI, EVI and NDWI) time-series summarizing 
the evolution of vegetation indices since 2005. To remove 
further noise in these time series, we decomposed each 
of them into their seasonal, trend and noise components. 
We kept the seasonal component and obtained the mini-
mum value and range (i.e. width between the minimum 
and maximum values) per transect and vegetation index. 
This procedure creates 6 vegetation features (indices 
93–98, type V) that condense the general vegetation and 
moisture conditions in the site over the time-series.

For the land cover, we reduced the number of classes 
to 12 due to two reasons: (1) the flagging sites are located 
only in certain types of land cover (e.g. deciduous, grass-
lands); (2) several land cover types are unrelated to the 
tick ecology (e.g. sweet water, saltmarshes) or can be 
aggregated to a coarser level (e.g. types of crop to agri-
cultural land), thus can be unified in a single category. 
After re-classifying the LGN, the product was resampled 
to 500 and 1000 m of spatial resolution using a majority 
filter. This process allows to account for the surroundings 
of each flagging site, and reduces the chances of the flag-
ging site to be placed in a noisy pixel at 25 m resolution. 
We obtained the value of the land cover for each of the 
flagging sites at these three different spatial resolutions 
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(indices 99-101, type L). The strength of the mast year 
of the year of the observation, as well as the strength of 
the previous 2 years (indices 7–15, Type M) is included 
in our work, because tick dynamics might have a delayed 
response to mast years. Finally, the habitat characteristics 
per transect are described using 5 variables: the thickness 
of litter layer and the amount of moss, herbal, brush and 
tree layers, which are encoded in 5 features (indices 1–6, 
Type H).

Modelling AQT with Random Forest
Random forest (RF) [6] is an ensemble learning method 
that can be used both for classification and regression 
problems. Ensemble methods rely on the creation of 
a committee of experts, which work on solving a real-
world problem while minimize the chances of taking a 
poor decision. In the case of RF, the ensemble is formed 
by a group of weak learners called decision trees, which 
are combined to create a robust decision ensemble.

RF is a combination of the bagging growing scheme 
[7] and the random subspace method [20]. These two 
sources of randomness contribute to create an ensemble 
with very different trees that lead to high variance pre-
dictions when tested individually [28]. Bagging allows RF 
to see multiple variations of the input data, whereas the 
RSM introduces randomness in the samples and features 
presented to each tree during the learning phase. This 
process creates an ensemble of trees, which is capable 
of adapting to the tick dynamics phenomenon, and yield 
predictions with great robustness and stability [43].

The mechanism used by RF to grow decision trees for 
regression problems, such as modelling AQT as a func-
tion of environmental features, is conceptually simple. 
For each tree (B), N bootstrap samples (with replace-
ment) are drawn from the available training data. This 
subsample is used to grow a unique decision tree (Tb) by 
recursively partitioning the N samples until a stop condi-
tion is reached, namely: (1) all the samples within a node 

Table 1 List of features involved in the current analysis

The features belong to the following categories: tick habitat (H), mast years (M), weather (W), vegetation (V) and land cover (L). The weather features are calculated at 
11 temporal aggregations, so there are 77 weather features in total. The X character is replaced by a number between 1 and 7 for short‑term temporal aggregations or 
by a 14, 30, 90 or 365 in the case of bi‑weekly, monthly, seasonal or yearly temporal aggregation, respectively. Mast features have a Y character that will be replaced by 
a number between 0 and 2 in function of the mast year they are referring to. In total, there are 101 features involved in this work

ID Feature name Short description Type

1 Litter Thickness of litter layer (Gassner et al. [15]) H

2 Moss Coverage on a 1–10 scale of the moss layer H

3 Herb Coverage on a 1–10 scale of the herb layer H

4 Brush Coverage on a 1–10 scale of the brush layer H

5 Tree Coverage on a 1–10 scale of the tree layer H

6 BioLC Land cover as described in [15] H

7 Oak‑Y Strength of mast year in a oak forests M

8 AOak‑Y Strength of mast year in American oak forests M

9 Beech‑Y Strength of mast year in European beech forests M

16 tmin‑X Average minimum temperature in a time window W

17 tmax‑X Average maximum temperature in a time window W

18 prec‑X Average precipitation in a time window W

19 rv‑X Average evapotranspiration in a time window W

20 rh‑X Average relative humidity in a time window W

21 sd‑X Average saturation deficit in a time window W

22 vp‑X Average vapour pressure in a time window W

93 min_ndvi Minimum NDVI value for a particular location in a year V

94 range_ndvi Range for NDVI value for a particular location in a year V

95 min_evi Minimum EVI value for a particular location in a year V

96 range_evi Range for EVI value for a particular location in a year V

97 min_ndwi Minimum NDWI value for a particular location in a year V

98 range_ndvi Range for NDWI value for a particular location in a year V

99 lc25 m Land cover type in a particular location at 25 m spatial resolution L

100 lc500 m Land cover type in a particular location at 500 m spatial resolution L

101 lc1 km Land cover type in a particular location at 1 km spatial resolution L



Page 7 of 15Garcia‑Martí et al. Int J Health Geogr  (2017) 16:41 

have the same target response target; (2) the samples in 
the node are homogeneous with respect to the selected 
features; (3) a heuristic, such as the maximum depth of 
the tree, is reached. If none of these conditions are met, 
the algorithm grows the tree by selecting the best fea-
ture and split point among a given and random subset 
of training features, where best means that it minimizes 
the Mean Squared Error (MSE). This process creates 
two child nodes, and the available samples are assigned 
to them considering the split criteria (e.g. samples with 
values for feature m larger than the split point value go to 
the left child node). This procedure is repeated until a full 
forest with B trees is grown.

After completing the training phase, RF predicts 
unseen samples by averaging the predictions of the B 
trees. This reduce the variance and the generalization 
error of the predictions. In fact, the generalization error 
converges as the number of trees increases, thus reducing 
the chances of overfitting data [6, 43].

A key characteristic of RF is that it provides a measure 
of the importance of the features involved in the model-
ling. This is done by averaging the reduction in MSE asso-
ciated to the use of each variable in each of the nodes/
trees that form the ensemble [28]. In our work, we exploit 
this characteristic to understand the main drivers of tick 
dynamics. Thus, the ranking of features provided by RF 
gives an idea about what the most relevant (or irrelevant) 
features are, regardless of the dimensionality of the prob-
lem. This is particularly suitable to understand the com-
plex and non-linear interactions found in biological and 
environmental systems.

RF, like most data-driven regression methods, are not 
time-aware models. This means that its standard appli-
cation to regression problems involving (seasonal) time-
series, such as the AQT dataset, can lead to sub-optimal 
results. The reason for this is that the trees in the RF 
ensemble are trained with random subsets of the train-
ing set, where each data sample belongs to a particu-
lar date. Thus, RF is trained to predict single snapshots 
and remains unaware of the temporal continuity of the 
time-series.

In this work we overcome this limitation by introduc-
ing time-awareness in RF. To do so, we transformed the 
AQT counts into monthly Z-scores by: (1) grouping the 
9  years of observations according to the month when 
they were collected; (2) calculating monthly means and 
standard deviations, after removing extreme observations 
from each group so that the Z-scores are not biased. In 
this context, extreme observations are those that report 
AQT counts above the 3rd quartile or below the 1st quar-
tile of the monthly values; (3) creating monthly Z-scores, 
by subtracting the monthly mean from each observation, 
and dividing the result by the corresponding monthly 

standard deviation. In this way, we ensure that samples 
collected during the same month have a constrained and 
normalized range of AQT counts.

With this monthly normalization we train RF to under-
stand which factors increase or decrease AQT with 
respect to the long-term average, instead of modelling 
the absolute number of ticks recorded in a particular 
location and month. Moreover, by predicting monthly 
Z-scores we help RF to understand the temporality of the 
data and hope to get more realistic seasonal dynamics 
than by using the classical (single snapshot) RF model.

The general set-up of the RF models was as follows: (1) 
we reserved 70% of the data for training, and the remain-
ing 30% was used for testing the model. Samples were 
randomly assigned to the training and test subsets; (2) 
To account for the randomness of RF (different features 
and samples used in each tree/run), we executed the 
models 10 times (keeping the training and test samples 
constant) and the error metrics and feature importance 
were averaged; (3) we use two well-known statistical met-
rics to validate our results, the root mean squared error 
(RMSE) and the normalized RMSE (NRMSE). Note that 
the error metrics were obtained after de-normalizing the 
Z-scored signal. Finally, we used the trained model to 
prepare maps illustrating its performance in a country-
wide scenario.

Experiments
The process described in “Volunteered tick counts 
reports” section creates four versions of the original data-
set with a varying number of zero and peaky AQT, and 
the process of feature engineering from “Characterizing 
the environment” section enriches each of the volun-
teered observations with 101 features. With this set-up, 
we designed the tree experiments explained in the next 
sub sections,whose goal is: (1) to assess the impact of 
noisy observations and selecting the best model capa-
ble of capturing AQT dynamics; (2) to evaluate the 
most important features to model AQT at different time 
scales; (3) to create AQT map for forested areas in the 
Netherlands.

Model selection by assessing the impact of noisy AQT
We modelled the four versions of the volunteered AQT 
dataset with our time-aware version of RF. Figure 2 shows 
the general performance of the models. To ease the inter-
pretation of these results, three elements are included: (1) 
a 1:1 line showing the ideal predictions; (2) a grey band 
showing one standard deviation from the mean of the 
observations; (3) a grey box containing the selected sta-
tistical metrics for this experiment. The visual inspection 
of the four plots shows that the two experiments using 
raw data perform poorly when compared to the two 
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experiments using smoothed data. The models built with 
raw data have the highest errors in terms of RMSE and 
NRMSE and also present a higher dispersion of the pre-
dictions, indicating that these models did not properly 
capture the peaky AQT observations.

A close inspection of the NRMSE metric reveals that 
RF models with smoothed data present very similar per-
formances, regardless of the number of zeros left in the 
AQT dataset. This suggests that smoothed models can 
capture the conditions yielding low AQT, but peaky AQT 
may be actually hampering the modelling process. This is 
clearly visible when inspecting the points falling outside 
the gray band in the bottom subplots: a certain number 
of high AQT true observations could not be captured by 
the model, thus producing a lower prediction than the 
true value. We selected the model for next experiments 
based on the lowest RMSE and NRMSE metrics, thus, 
out of the four models, we picked the one keeping zero 
AQT and smoothing the peaky AQT with the Savitzky-
Golay filter.

Table  2 presents the feature importance of the top 10 
features for the selected RF model. To ease the inter-
pretation of results, we restrict the ranking of the fea-
ture importance to the top 10 most prominent out of 
101. As seen in this table, the modelled phenomenon 
is driven by a combination of several weather variables 
and a vegetation one. The two most explanatory fea-
tures are the annual evapotranspiration (i.e. ev-365) and 
the monthly relative humidity (i.e. rh-30). Temperature, 
which has been traditionally spotted in tick modelling 
studies as a major driver of tick dynamics, only appears 

once (as tmax-365) and with a relatively low importance. 
In this experiment, water-related features perform bet-
ter than temperature. Note that evapotranspiration and 
relative humidity do appear several times in the rank-
ing (i.e. ev-90, rh-365), suggesting that in a context with 
multiple atmospheric variables, water-levels are again 
more important than temperature. It is also important to 
highlight that variables about mast years or tick habitat 
do not appear in the top ten. This could be because they 
are static (i.e. one value for the whole study period) and, 
hence, unable to explain the temporal and spatial varia-
tion in seen in the AQT dataset.

Fig. 2 Performance of RF in each of the four selected scenarios. The X‑axis represents the predictions yielded by the model and the Y‑axis the true 
values measured by volunteers. To assess the quality of the volunteered AQT dataset, we have tested RF with varying levels of zero AQT and peaky 
AQT. As seen, the model has more difficulties in capturing peaks than zeros. Thus, the selected model for the following experiments is the model at 
the bottom left, because it presents the lowest metrics

Table 2 Ranking of  the top ten most important features 
(out of 101) for the selected RF model

The sum of the feature importance for all features provided by RF equals to 1, 
but to ease the interpretation of results we multiplied it by a hundred to have 
natural numbers. As seen, features involving atmospheric water levels (i.e. 
evapotranspiration and relative humidity) are found to be important to predict 
tick activity, since they appear several times in the current ranking

Position Feature Importance

1 ev‑365 15

2 rh‑30 11

3 tmax‑365 7

4 prec‑90 4

5 prec‑3 4

6 ev‑90 3

7 rh‑365 3

8 tmin‑365 2

9 prec‑365 2

10 tmax‑90 2
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To further evaluate the usefulness of our RF-based 
model to predict AQT, we split the test samples accord-
ing to their associated transect (cf. Fig.  3). The good-
ness of the fitting  (R2) between the predictions and the 
real smoothed AQT values varies between 0.19 and 0.94, 
indicating that the performance of the model strongly 
depends on each transect. In Fig. 4 (left) we sort the  R2 
values to provide a better depiction of the performance 
of the model per transect. Based on these results, we note 
that the model presents a moderate-to-strong  R2 (i.e. 
0.7 < R2 < 1) for roughtly half of the sites. This means that 
these transects better respond to weather variables than 
the remaining transects, in which AQT may be driven 
by variables, such as wildlife, not included in the current 
model. Note that for transects within the same site (e.g. 
Vaals, Montferland) the goodness of fit is very different, 
revealing the very local nature of AQT. Figure  4 (right) 
shows the geographic representation of the transects. 
Symbols in green represent the transects better respond-
ing to weather variables, whereas red symbols represent 
the poorly fitted transects. The visual inspection of this 
figure shows no strong spatial pattern (e.g. north–south 
gradient). 

Feature importance across multiple time scales
The model structure selected in the previous section is 
used here to find out the best temporal scale to model 
AQT. To do so, we train one RF model for each of the 
11 time scales described in “Characterizing the environ-
ment” section and we execute the model with a subset of 
features of the input dataset: we keep all the non-weather 
features (a total of 24 features) and we add the weather 
features corresponding to that particular time scale (7 
features). Thus, we run the modelling process 11 times 
with 31 features, providing at each iteration the feature 
importance. In this way, it is possible to get new insights 
about whether the importance of the features to model 
AQT change over increasing temporal windows, which 
might guide the choice of a particular time scale to model 
AQT optimally.

Table 3 shows the importance of the features at mul-
tiple time scales. Each column of the table shows the 
top five most important features (out of 31) for each 
of the selected time scales. To ease the description of 
results at multiple time scales, we restrict the ranking of 
features to the most relevant top five. This table shows 
that the most explanatory features for all time scales are 

Fig. 3 Performance of the selected RF for each flagging site. The X‑axis represents the prediction yielded by the model and the Y‑axis the true 
values measured by the volunteers. The  R2 value is provided in the title of each subplot
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weather-based ones and that non-weather features (i.e. 
vegetation, land cover, tick habitat, mast years) do not 
significantly contribute to model tick dynamics. Evapo-
transpiration, relative humidity and the maximum tem-
perature appear to be the most important features. EV 
better performed in the short-term experiments (i.e. 
temporal aggregation from 1  day to 4  days before the 
sampling date), whereas RH is the best one in the long-
term experiments (i.e. seasonal and annual temporal 
aggregation). TX appears to be the best predictor in the 
remaining experiments.

Mapping tick dynamics
The RF model selected in “Model selection by assessing 
the impact of noisy AQT” section was used in a country-
wide exercise to produce three map products: the mean 
and standard deviation of AQT for the year 2014, and 
the AQT on a date expected to be close to the peak activ-
ity of ticks in nymphal stage. We selected the year 2014 
because it is the last of the AQT time-series.

Since the flagging sites are located in forested areas, 
we identified forested pixels in the land cover map and 
extracted their locations. Then, to this selection of pixels, 

Fig. 4 Performance of the selected RF model per transect sorted by the  R2 score (left) with its geographic location (right). The left image shows that 
the model is able to fit half of the sites with a moderate‑to‑strong  R2 (i.e. 0.7 < R2 < 1), whereas the performance in the remaining sites is weak‑to‑
moderate (i.e. 0.3 < R2 < 0.7). This means that the transects with a high  R2 score, respond better to weather variables than the rest of the transects, 
which may be driven by variables not included in the current model (e.g. wildlife) due to inavailability. The right figure shows the geographic 
location of the transects: green squares represent transects with moderate‑to‑strong fitting, whereas red squares represents transects with weak‑to‑
moderate fitting

Table 3 Ranking of the top five features for the selected RF model across all temporal scales

Each feature is accompanied by its importance, which has been calculated as the mean of 10 runs. Features involving atmospheric water levels (i.e. evapotranspiration 
and relative humidity) are found to be relevant to model tick activity in all temporal scales. These results are consistent with the ones provided by the general model. 
Interestingly, evapotranspiration is marked as the most relevant feature in very short‑term time scales, whereas relative humidity is a better predictor for long time 
scales

Days

1 2 3 4 5 6 7 14 30 90 365

F I F I F I F I F I F I F I F I F I F I F I

Ranking

 1 EV 15 EV 15 EV 15 EV 15 TX 16 TX 14 EV 14 TX 14 TX 15 RH 17 RH 16

 2 TX 13 TX 14 TX 14 TX 14 EV 13 EV 13 TX 13 TN 13 PR 14 EV 15 TX 15

 3 TN 11 TN 12 PR 13 PR 11 TN 12 P 13 TN 12 EV 12 RH 12 PR 14 PR 13

 4 RH 11 RH 11 TN 12 TN 11 PR 11 RH 12 RH 12 PR 12 TN 12 SD 9 EV 13

 5 PR 10 PR 9 RH 10 RH 10 RH 10 TN 9 PR 11 RH 11 EV 11 TN 9 TN 12
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we applied the process of feature engineering described in 
“Characterizing the environment” section for each day of 
the selected year, thus obtaining 365 country level data-
sets. The model was retrained with the 86 features avail-
able at the country level (i.e. remove tick habitat and mast 
year features) and tested with the newly created datasets 
for forested pixels. The predictions yielded by the model 
were transformed into raster format to obtain three prod-
ucts: first, we obtained the annual mean and standard 
deviation of AQT based on the daily computed values, 
which identifies at the country level regions with higher 
or lower tick activity; second, we obtained the temporal 
profile of the pixels containing the sites to visualize the 
daily seasonality of AQT; third, we mapped the AQT for a 
particular day of the year, which is expected to be close to 
the peak of tick populations in the nymphal stage.

Figure 5 illustrates the annual mean (left) and standard 
deviation (right) of predicted AQT. A visual inspection 
of the mean map shows that there are more AQT in the 
eastern half of the country (i.e. orange to red regions), 

especially within the provinces of Overijssel and Drenthe. 
The standard deviation map depicts the spatial variability 
of the predictions: regions in light green and yellow show 
areas where the predictions oscillated significantly above 
or below the mean AQT, whereas regions in dark blue 
show locations where the prediction is stable through-
out the year. Figure  6 shows the daily temporal evolu-
tion of AQT for the grid cells where the flagging sites are 
located. This figure also shows three additional elements: 
the long-term monthly average for all sites obtained from 
the boxplots, the long-term monthly average for the site, 
and the 2014 monthly average for the site. Note that there 
are 15 sub plots, because each grid cell overlaps the two 
transects. This allows to visually identify sites whose pre-
dicted AQT is (dis)similar to the averages. Figure 7 shows 
the predicted AQT for June 1st, which we expect to be 
close to this peak population of nymphs. As seen, the 
highest predictions of AQT are predicted in the east half 
of the country, but there is another spot of high activity 
in the southern province of Noord-Brabant.

Fig. 5 Predicted mean (left map) and standard deviation (right map) of AQT for 2014. The map of mean AQT ranges between 0 (green) and 32 
(red) and shows how the highest values of tick activity during 2014 are concentrated within the provinces of Overijssel and Drenthe. The map of 
the standard deviation of AQT ranges between 3 (dark blue) and 26 (yellow) and shows the deviation from the mean of all forested pixels in the 
country. As seen, the east half of the country presents higher variations, indicating that tick activity in this areas may change significantly. On the 
contrary, the predictions along the coastal provinces (i.e. Noord‑Holland, Zuid‑Holland and Zeeland) do not seem to deviate significantly from the 
predicted mean
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Discussion
Ensemble learning algorithms such as RF can model non-
linear relationships in complex natural processes. This 
data-driven algorithm provides an indication of the rela-
tive feature importance of the predictors involved in the 
analysis. This is particularly useful to model processes 
in which the main drivers are unknown. RF has a robust 
and stable behavior when handling potentially noisy data, 
a condition often occurring in volunteered datasets, like 
our AQT time-series. However, since RF is not a time-
aware method, it performs sub optimally when modelling 
seasonal phenomena. In this work, we provide a meth-
odological innovation to introduce time-awareness in RF 
by transforming our target AQT signal into a monthly 

bounded one, thus helping the trees in the ensemble to 
distinguish time.

The study on the importance of the features show that 
water-related features (i.e. evapotranspiration and rela-
tive humidity) are better predictors of the tick activity 
than temperature or vegetation. This suggests that the 
tick activity may be driven by atmospheric water levels, 
which are crucial for tick survival. A closer look of the 
model performances regarding statistical metrics, indi-
cate that the model can fit the AQT signal for half of 
the transects, but the fitting decays for the other half. A 
hypothesis that may explain this difference is that the tick 
activity may be driven by different variable depending on 
the geographic location: the sites with a higher  R2 score 

Fig. 6 Daily predicted AQT for the locations of the flagging sites. Each subplot contains four curves: the long‑term monthly average (grey) across all 
sites, the long‑term monthly average for the flagging site (dark red), the 2014 monthly average for the flagging site (black), and the daily predicted 
AQT for 2014 yielded by RF (blue). Note that in 2014, the sampling stopped in Nijverdal and Eijsden
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might be strongly influenced by atmospheric conditions, 
whereas the sites with a lower  R2 score might be driven 
by variables currently not included in the model (e.g. 
wildlife). In addition, the analysis of the feature impor-
tance at multiple temporal scales is consistent with the 
results of the general model, because water-related fea-
tures are spotted as the most prominent features across 
all temporal scales.

The two major hurdles encountered during this experi-
ment are related with the weather uniformity in the 
country and the low spatial resolution of the available 
environmental datasets. First, the low elevation and the 
small size of the Netherlands make the country very uni-
form in terms of weather and vegetation variables (e.g. 
reduced north–south temperature gradient, high and 
persistent “greenness”). This means that vegetation indi-
ces, often included in previous studies in the field, are 

not discriminative enough to model AQT. Second, the 
available weather and vegetation datasets have a spatial 
resolution which is too coarse to model tick dynam-
ics, a phenomenon which was found to be very local as 
suggested in [14]. This might have an impact when char-
acterizing the AQT with the environmental datasets: 
different locations with similar weather conditions yield 
an uncorrelated number of AQT, masking the relation-
ship between weather and ticks and increasing the errors 
of the model. To mitigate these effects and decrease 
the average error of the models, we recommend using 
weather datasets at a finer resolution or involve more 
volunteers in this long-term citizen science project to get 
more data.

Conclusion
Citizen science initiatives allow monitoring of environ-
mental phenomena via crowdsourcing, and produce 
geospatial data collections that can support scientific 
analysis. The question at the beginning of this work was 
whether the collective effort carried out by a group of 
volunteers, would translate into predictive models esti-
mating tick activity in the Netherlands. Results show that 
combining volunteered AQT data with environmental 
variables and modelling them with a time-aware version 
of RF, can capture most of the spatial and temporal varia-
tion in the number of active questing ticks in the country.

The combined analysis of volunteered AQT and envi-
ronmental variables consistently spotted that water-based 
features, especially evapotranspiration, play a crucial role 
in predicting AQT. In this sense, further studies in the 
field of tick ecology should consider adding, besides the 
classical temperature and vegetation indices, water-based 
features. Aside identifying the most important variables 
to model tick dynamics, this study has produced a model 
that, scaling up from volunteered observations, can map 
daily tick activity at the country level. The use of this 
model may open the way to study spatial patterns and 
seasonal trends at the national level, not only tick activity, 
but also of other non-linear natural phenomena, such as 
phenological events or species distributions.

With these new insights, we envision different applica-
tions in the field of tick related ecological research, nature 
management and public health. In ecological research, 
our tick activity model allows the identification of tick 
hotspots and of the sampling sites where the model fit 
was good or bad, which can be used to better select new 
monitoring sites. With the model we can better analyze 
the impact of extreme weather events and climate change 
on tick dynamics and population development. In nature 
management, these maps can help owners of green 
areas to be more aware of the variation of tick dynam-
ics in the areas they are responsible for, which can lead to 

Fig. 7 Predicted AQT at the country level for June 1st of 2014. The 
map ranges from low values of tick activity (dark green) to high val‑
ues of tick activity (red). The peak populations of ticks in the nymphal 
stage reaches its maximum between May and June depending on 
the weather conditions of the year. Thus, we expect this date to be a 
close depiction of the tick activity at its maximum. The highest AQT 
are predicted in the east half of the country, in particular within the 
province of Drenthe, whereas coastal regions present lower levels of 
tick activity
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a better planning in space and time of different forestry 
management activities. In tick hotspots with many visi-
tors, nature managers could consider to more frequently 
mow the grass directly next to walking and cycling trails 
or picnic areas to try to reduce tick populations. In pub-
lic health, this model can be used to better inform people 
that visit natural areas on current tick activity levels. In 
combination with weather forecasts also detailed fore-
casts for the coming days can be given. The proposed 
model predicting tick activity will replace the very basic 
tick activity forecast currently implemented in the Dutch 
citizen science website Tekenradar (Tick radar, www.
tekenradar.nl). The spatially detailed tick activity fore-
casts are expected to raise awareness among the general 
public and many different stakeholders involved in the 
problem of Lyme disease. Having more detailed informa-
tion hopefully translates in an increase of protective and 
preventive measures when visiting forested areas. Over-
all, we expect that a better understanding of tick dynam-
ics may contribute to design interventions to reduce the 
incidence of Lyme disease.
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