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Abstract 

Background: The built environment health promotion has attracted notable attention across a wide spectrum of 
health-related research over the past decade. However, the results about the contextual effects on health and PA are 
highly heterogeneous. The discrepancies between the results can potentially be partly explained by the diverse use 
of different spatial units of analysis in assessing individuals’ exposure to various environment characteristics. This study 
investigated whether different residential and activity space units of analysis yield distinct results regarding the asso-
ciation between the built environment and health. In addition, this study examines the challenges and opportunities 
of the different spatial units of analysis for environmental health-related research.

Methods: Two common residential units of analysis and two novel activity space models were used to examine 
older adults’ wellbeing in relation to the built environment features in the Helsinki Metropolitan Area, Finland. An 
administrative unit, 500 m residential buffer, home range model and individualized residential exposure model were 
used to assess the associations between the built environment and wellbeing of respondent’s (n = 844).

Results: All four different spatial units of analysis yield distinct results regarding the associations between the built 
environment characteristics and wellbeing. A positive association between green space and health was found only 
when exposure was assessed with individualized residential exposure model. Walkability index and the length of 
pedestrian and bicycle roads were found to positively correlate with perceived wellbeing measures only with a home 
range model. Additionally, all units of analysis differed from each other in terms of size, shape, and how they capture 
different contextual measures.

Conclusions: The results show that different spatial units of analysis result in considerably different measurements of 
built environment. In turn, the differences derived from the use of different spatial units seem to considerably affect 
the associations between environment characteristics and wellbeing measures. Although it is not easy to argue about 
the correctness of these measurements, what is evident is that they can reveal different wellbeing outcomes. While 
some methods are especially usable to determine the availability of environmental opportunities that promote active 
travel and the related health outcomes, others can provide us with insight into the mechanisms how the actual expo-
sure to green structure can enhance wellbeing.
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Background
Built environment health promotion has attracted nota-
ble attention across a wide spectrum of health-related 
research over the past decade [1–4]. Several built envi-
ronment features, such as connectivity, density, walkabil-
ity, and mixed land use, have been found to be positively 
associated with both perceived and objectively measured 
health, physical activity (PA), and active mobility [5–9]. 
Furthermore, research has shown that green areas have 
positive wellbeing effects and exposure to natural settings 
decreases stress and increases positive affect [10–12]. 
Studies have also found links between walkable neigh-
borhoods and decreases in prevalence of overweight, 
obesity, and incidence of diabetes [13, 14]. In addition, 
neighborhood walkability has been linked to increases in 
cardiorespiratory fitness [15].

However, the results of the prior research about the 
contextual effects on health and PA are highly heteroge-
neous [16–18]. The discrepancies between the results can 
potentially be explained by the diverse use of different 
spatial units of analysis in assessing individuals’ exposure 
to various environment characteristics [19–23]. The vast 
majority of previous studies has concentrated on analyz-
ing the built environment features around individuals’ 
residences or “neighborhoods” that have been delineated 
through administrative units (e.g., census tract, postal 
code areas) or residential or workplace buffers with vary-
ing radii and buffering methods [22, 24]. These units have 
been a popular way of defining the spatial extent of indi-
viduals’ exposure to different environmental features, 
mostly due to their availability and ease of use.

Network and “sausage” buffers that create polygons 
around individuals’ residences based on the street net-
work have become commonly applied spatial units of 
analysis to define individuals’ neighborhoods in public 
health research [19]. While it is evident that various net-
work buffers are superior to simple administrative units 
or circular buffers, these units are also still unable to 
characterize the space within which people actually move 
around [25]. Despite the advances in the buffer-based 
units of analysis, these approaches account only for the 
built environment characteristics around individuals’ res-
idences and neglect the spatial realities of where, as well 
as the temporal aspect of when and how long, individu-
als are moving around [20, 26]. Due to the static nature 
of these units of analysis, it is assumed that individuals 
are exposed solely to the environment around their resi-
dency and, thus, manage to capture only a hypothetical 
individual exposure. According to Kwan [18], this “uncer-
tain geographic context problem (UGCoP)” is one of the 
reasons why research findings concerning the effects of 
the built environment on health have been found to be 
inconsistent.

In their literature review, Leal and Chaix [25] found 
that 90% of the studies examining the associations 
between built environment and cardiometabolic risk 
factors focused their analysis solely on residential envi-
ronments [25]. The problematic nature of most of these 
kinds of studies, where the research is limited to static 
neighborhoods, has also been highlighted within the new 
mobilities paradigm [27, 28]. The “mobility turn” in social 
sciences underlines the essential role of person-based 
and dynamic analysis and stresses a move forward from 
static spatial approaches [29]. Similarly, studies exam-
ining the associations between built environment and 
health have noted the complexity of defining individuals’ 
spatial exposure and “local” neighborhoods [30].

Recent research has been taking steps toward more 
dynamic and person-based units of analysis to define the 
spatiotemporal extents of individuals’ neighborhoods 
and spatial exposure by capturing the notions of activity 
space [21, 26, 31–33]. These studies account for individu-
als’ actions and mobility behaviors within and exterior to 
their residences and local neighborhoods to overcome 
the uncertainty of the geographic context [18, 32]. The 
studies have used GPS tracking devices as well as online 
participatory mapping methods to collect data about the 
spatial extent of individual behavior [20, 26, 32, 33].

Hasanzadeh et al. [33] have developed a versatile model 
of activity spaces using an individual-based delineation of 
places of everyday activities. In their study, Hasanzadeh 
et al. [33] created an individual-based definition of activ-
ity spaces that are dynamic in their boundaries. Later 
Hasanzadeh and colleagues [26] introduced a more spa-
tially sensitive model of individual activity spaces using a 
notion of place exposure. This individualized residential 
exposure model (IREM) is based on the understanding 
that the influencing context is more than a delineated 
area around an individual’s place of residence and every-
day activity places. According to Hasanzadeh et al. [26], 
a more refined picture of activity spaces can be achieved 
through an estimation of place exposure and its varia-
tion throughout an individual’s activity space. In their 
study, Kestens et al. [32] compared activity spaces delin-
eated from GPS tracking with activity spaces delineated 
from an online participatory mapping questionnaire on 
regular destinations and concluded that self-reported 
destinations provided a representative picture of study 
participants’ spatial realities of where they move around.

Despite the notions that the research on the built 
environment impacts on health and PA yields varying 
results, only a few studies have compared whether the 
association between built environment characteristics 
and health outcomes differs when using various spatial 
units of analysis in capturing the context. Zenk et  al. 
[22] found evidence that environmental features were 
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related to participants’ weight-related behaviors when 
using modeled activity spaces as units of analysis, but 
the environmental features of mere residential neighbor-
hoods were not. In their study, Howell et al. [20] assessed 
how PA and walkability associations vary when different 
spatial measures were used and reported stronger asso-
ciations between PA and walkability with activity spaces 
rather than with the simple home neighborhood unit 
of analysis. In their international study, Frank et al. [19] 
compared different buffering methods and concluded 
that the values of built environment measures differed 
significantly between detailed, detailed-trimmed, and 
sausage buffers. Holliday et al. [31] reported that simple 
residential buffers are an ill-fitting unit of analysis solu-
tion without assessing prior to each study if the simple 
residential neighborhood is an appropriate exposure area 
to study the health behavior in consideration. In a recent 
study, Zhao et al. [23] found that activity space measured 
with either standard deviational ellipse, minimum con-
vex polygon or road network buffer influenced if and how 
an environmental variable affected obesity. According 
to Kestens et  al. [34], activity spaces created both using 
GPS and map-based questionnaires can provide a way 
to overcome the contextual problems and improve our 
understanding about the mechanisms that connect place 
to health.

In this study, we seek to build on the previous, yet 
rather limited, research that have compared whether the 
associations between the built environment measures 
and health differ when individual exposure is assessed 
with various spatial units of analysis including the latest 
person-based models [19, 31, 32]. The goal of this study 
is to investigate whether different spatial units of analysis 
yield distinct results regarding the association between 
the built environment and health. This study also exam-
ines the challenges and opportunities of the different 
spatial units of analysis for environmental health-related 
research.

We applied two common residential units of analysis 
and two novel activity space models to examine older 
adults’ perceived wellbeing in relation to the built envi-
ronment features in the Helsinki Metropolitan Area 
(HMA), Finland. In detail, we investigated whether the 
associations between commonly used built environment 
measures and perceived wellbeing outcomes differ when 
using an administrative unit, residential buffer, home 
range model [33], or IREM [26] for assessing the individ-
ual environmental exposure. We also compared how the 
four different models match with activity spaces deline-
ated from GPS activity spaces collected from a subsample 
of the study participants. The GPS tracking offers data 
about human mobility behavior free of self-report bias 
[34] and, thus, offers a possibility to study the challenges 

and opportunities of the different spatial units of analysis 
based on participatory mapping in comparison to GPS 
activity spaces.

Methods
Study area and participants
A random sample of 5000 residents of HMA aged 
between 55 and 75 years received an invitation letter by 
mail in September 2015 asking them to participate in an 
online survey. A total of 1139 full or partial responses 
were received, and after removing incomplete responses, 
844 were taken for further analysis. Participants con-
sisted of 447 women and 331 men with a mean age of 
64.3 (SD 5.52). The data showed general consistency on 
most sociodemographic variables within the study region 
(Table  1). A raffle for five hundred euro gift cards was 
arranged between all participants. Aalto University’s 
Research Ethics Board approved the study.

The data were collected using a place-based mapping 
method, public participation GIS (PPGIS), which com-
bines internet maps with traditional questionnaires [35]. 
PPGIS has offered convenient tools for previous studies 
investigating human behavior in a context-sensitive way 
[36–39]. Localization of human experiences and behav-
ioral patterns by participatory mapping tools attaches 
them to specific physical environmental context [40]. 
Thus, human behavior and experiences receive geo-
graphic coordinates, which allows simultaneous GIS-
based analysis of human behavior in relation to the 
physical environment [35]. In the survey, the respondents 
used an online interface to mark their everyday errand 
points (EEPs) on a map. In addition, the respondents 
indicated which transport mode they used and how fre-
quently they accessed the places. The survey was created 
with  Maptionnaire® tool. With the place-based map-
ping method, we were able to study older adults’ spatial 

Table 1 Explanations of the abbreviations for the variables 
in the equation

a Not included for buffer and administrative unit models

Abbreviations Variables

WB Wellbeing measure

Gr Greenness

LUM Land use mix

W Walkability

PC Pedestrian/cycling routes

S Sizea

I Income

AG Age

G Gender

EDU Education

RT Retirement status
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behavior context-sensitively by asking respondents to 
think about their typical week and mark on the map 
all sorts of everyday places they visit during the week. 
Simultaneously, the respondents’ personal background 
characteristics were studied by asking them to answer 
several questions related to their sociodemographic 
background.

Additional GPS data were collected to compare and 
validate how the different models of activity spaces match 
with the GPS tracks collected from a subsample of par-
ticipants. A subsample of 100 participants of the PPGIS 
survey were selected, and an invitation to participate in 
additional GPS data collection was sent to participants’ 
home addresses in September 2016. The participants 
were offered a 50 euro gift card for their participation. 
Twenty-nine participants used GPS devices with built-in 
accelerometers (Sensedoc ™ 2.0; MAX-M8 Global Navi-
gation Satellite System receiver from u-blox, 2  s epoch, 
Tri-axial accelerometer, 50  Hz) for eight consecutive 
days. The participants also kept travel diaries during the 
same eight-day period. Those participants with valid 
data for GPS were included in the analysis, thus leaving 

a final sample size of 18 individuals. Excluded users were 
people who reported having an unusual week, traveled 
extensively outside home surroundings during the study, 
or had problems using the device. The excluded users did 
not show any significant differences to the rest of users in 
terms of socio-demographics.

Activity space models
We implemented and subsequently compared four dif-
ferent spatial units of analysis. While all four units of 
analysis are individual-based, they differ significantly in 
terms of their complexity (Fig. 1). All four units of analy-
sis will be referred to here as models of activity spaces, 
regardless of the complexity and the way they have been 
delineated. The first models are technically simple while 
the other two are more individual-specific and therefore 
come with higher technical complexities.

The first model, administrative boundary, is based on 
the postal areas and is determined for each individual 
based on their place of domicile. The second model is 
a circular buffer around each individual’s home. This 
buffer was implemented using a static radius of 500 m, 

Fig. 1 The four different ways respondents’ activity spaces were modeled
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which is adopted as a commonly used distance in the 
literature [33]. The third model used, home range, is an 
individual-specific boundary method, which was first 
introduced by Hasanzadeh et al. [33]. Following the cri-
teria suggested in the study, we listed all EEPs based on 
their distance from the participant’s home location. The 
Jenk’s optimization method revealed 4  km as the suit-
able home range distance for the data set [33, 41, 42]. 
This distance is based on the first natural break value 
including at least 80% of EEPs marked by the partici-
pants. It should be noted that the optimum number of 
classes for the Jenk’s algorithm was determined using 
Goodness of Variance Fit (GVF) [42]. In the next step, a 
convex hull was applied to enclose all EEPs as well as the 
home point. However, prior to the implementation of 
convex hulls, buffers were applied to each point marked 
by the participants. Accordingly, buffers with distances 
500 and 140 m were applied to the home locations and 
EEPs, respectively. According to Hasanzadeh et al. [33], 
500 m is the most frequently used distance for defining 
immediate neighborhoods in literature, and 140  m is 
identified as a suitable estimation of activity cluster sizes 
in a data set collected from the same area as the current 
study. The later distance was calculated in the study as 
the average diameter of the spatial clusters formed by 
the aggregate of EEP markings [33].

The fourth model, IREM, is an exposure-based model 
of activity spaces [26]. Following the IREM criteria, we 
estimated the level of place exposure for each respond-
ent throughout individual activity spaces using infor-
mation on home location, visited places, frequency of 
visits, travel paths, and use of travel modes. In the IREM 
approach, exposure is expressed by assigning weights for 
places visited in terms of reported visit times per month 
with highest frequency of visits assigned to the home 
location. In addition, IREM estimates the level of expo-
sure by taking into account the travel behavior of each 
individual. In IREM, the weight assigned to each travel 
path consists of the geometric average of weights at the 
origin and destination points and the average speed of 
the reported travel mode [26]. As an example, an indi-
vidual who reported a higher frequency of use for a cer-
tain path with a non-motorized transportation mode is 
assumed to have higher exposure to his or her surround-
ings along their trip route compared to a less-frequently 
traveling individual who uses motorized transportation 
modes.

In the last step of creating IREM, an inverse distance 
function was applied to produce a raster representing the 
activity space of each individual [26]. The raster is made 
of square pixels with dimensions 25 m × 25 m, each con-
taining a value as the estimation of exposure magnitude 
in its corresponding location. The exposure values are 

normalized using a sigmoid function with 0 as the mini-
mum exposure and no upper limit defined for highest 
exposures [26]. The boundary of IREM was defined by 
the polygon encapsulating the high exposure areas. In 
this study, high exposure areas were identified as places 
with exposure values of more than 50% of the individual 
maximum.

Figure  1 shows an example of all four activity spaces 
modeled. It should be noted that we did not have any 
information about the actual travel path in the data set 
for the home range and IREM modeling. Therefore, the 
shortest path between each participant’s home location 
and their EEPs was found using the Network Analyst 
toolbox of ArcGIS 10.5. The transportation mode indi-
cated by the participant for visiting each specific EEP 
was taken into consideration while choosing the shortest 
path.

Dependent variables
Four different perceived wellbeing measures were used 
to test the associations between health and built envi-
ronment measures. In the survey, the respondents were 
asked, how would they describe their (1) overall health 
situation, (2) ability to function, (3) quality of life, and 
(4) state of happiness at the moment. Respondents were 
asked to evaluate these four perceived wellbeing meas-
ures using a five-point Likert scale that ranged from very 
bad to very good. According to an extensive review by 
Kerr and colleagues [3] the evidence is building to sug-
gest that older adults’ physical health and functioning 
is connected to built environment factors. There is also 
evidence that perceived as well as objectively measured 
human health is in link with the physical environment 
characteristics, such as green spaces [10, 12, 43]. The 
overall health situation and quality of life as well as the 
happiness measure have been used in previous studies 
about the contextual effects on perceived health and on 
gross national happiness [9, 44]. The functional ability 
was included as an additional measure targeting the spe-
cific older age group of the study [3].

Independent variables
The built environment features have been found to be 
positively associated with health in many studies across 
the globe [5–9]. Thus, we used five different built envi-
ronment measures to test their possible associations with 
perceived health of individuals. We measured amount of 
green spaces [7, 10, 11], the size of the modeled activity 
space [22, 26], land-use mix (LUM) [8] and walkability [2, 
7] as walkability index and the length of pedestrian and 
cycling routes. The five measures were derived in GIS for 
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administrative unit, 500 m residential buffer, home range 
model and IREM.

Greenness
This is a measure showing the amount of green areas 
within each individual activity space. For the three bound-
ary approaches, namely administrative boundary, buffer, 
and home range, this was simply calculated as the per-
centage of land covered by green areas. For IREM, this 
was defined as the percentage of green exposure, and it 
was operationalized as the ratio of exposure to green areas 
to the total exposure within the activity space. Green 
exposures were determined as the value of exposure to 
the pixel identified as green, as estimated by IREM.

Size of activity space
This is a geometric measure capturing the total surface 
of the activity space areas. For IREM, the high-exposure 
polygon was used to measure the surface.

Land‑use mix
Higher mix of land use has been shown to enhance PA 
because it provides versatility to the built environment 
and provides a variety of destinations closer to each other 
[7]. The LUM measure considered four land-use types: 
residential, commercial, traffic, and green space. Previous 
studies have also considered entertainment, office, and 
institutional land uses for the mix measure [45, 46]. We 
adopted these particular land-use categories for the LUM 
measure for two reasons: available data sets and they pro-
vide the best possible correspondence to the actual built 
environment in the study area. The formula used to cal-
culate the LUM was modified from the formula used by 
Frank et al. [46]:

where H is the LUM score, pi is the proportion of land 
use i among all land-use classes, and n is the number of 
land-use types. The information concerning land use, 
including green areas, was calculated from the CORINE 
dataset which is a raster dataset that provides informa-
tion on Finnish land cover and land use on 2012. The data 
of CORINE has been produced as a part of the European 
Gioland 2012 project by Finnish Environment Institute 
(SYKE).

Walkability
Walkability was assessed according to the walkabil-
ity index [45]. Walkability index was calculated as the 

H = −1

(

n
∑

i=1

pi ∗ ln (pi)

)/

ln (n)

sum of the z-scores of the four urban form measures 
[(2 × z-intersection density) + (z-net residential den-
sity) + (z-commercial floor area ratio) + (z-land-use 
mix)]. The measures were drawn from CORINE as well 
as from Digiroad that is an open road and traffic dataset 
provided by the Finnish Transport Agency.

Length of pedestrian/cycling routes
This measure was calculated as the total length of pedes-
trian and cycling routes in meters per square meter of 
the area of the spatial unit of analysis. For IREM, the 
high exposure polygon was used for the measurement. 
The pedestrian and bicycle roads were drawn from Open 
Street Map which is open geospatial data produced by a 
community of mappers. The data of OSM is fully open 
and licensed under the Open Data Commons Open 
Database License (ODbL) by the OpenStreetMap Foun-
dation (OSMF).

Statistical analyses
The statistical analysis of the different activity space 
models had three main objectives. The first was to com-
pare the contextual variables obtained with different 
activity space models in order to examine whether they 
are significantly different. Paired sample t tests were uti-
lized to examine whether significant differences exist 
between contextual variables calculated using differ-
ent activity space models. The significance of compari-
son results is adjusted for type I error using Bonferroni 
correction.

Second, we compared how the four activity space mod-
els match with the GPS tracks collected from a subsam-
ple of participants. To do so, we overlaid the GPS tracks 
with each model and calculated the percentage of over-
lap before applying the 4-km locality threshold and then 
after it.

Third, we conducted four independent regression anal-
yses using multivariate linear regression. Each analysis 
took all the five activity space-based built environment 
measures as the independent variables and one of the 
four wellbeing measures as the dependent variable. All 
regression models were controlled for gender, age, educa-
tion level, income, and retirement state. The purpose was 
to analyze the effect of activity space-based built environ-
ment measures on participants’ perceived wellbeing and 
see how the choice of activity space model can affect the 
significance of observed associations. The model is as 
follows:

WB = β0 + β1Gr+ β2LUM+ β3W+ β4PC+ (β5S)

+ β6I+ β7AG+ β8G+ β9EDU+ β10RT+ ε
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The independent variables of the model are explained 
in Table 1.

Results
Comparative analysis of activity space extents 
and measures
As expected, the four models vary significantly in size and 
shape (Table  2). The results show that the home range 
model has the most overall overlap with other methods, 
whereas the buffer approach shares the least overlaps 

among the methods (Fig. 2). Similarly, as Table 3 shows, 
the home range model has the highest level of consist-
ency with GPS activity space. The home range model 
covered over half of the total GPS activity space, and the 
spatial overlap was 40% for IREM. Administrative unit 
and buffer covered a little less, with mean overlap of 38% 
for the former and 35% for the latter of the whole GPS 
activity space. When a 4-km cutoff distance to the GPS 
activity space was considered, the home range model cov-
ered nearly 80% and IREM two-thirds of the GPS activity 
space. The buffer approach shows the lowest match rate 
with GPS activity space with an average overlap of around 
55% within the 4-km locality threshold (Table 3).

Next, we performed paired sample t tests to examine 
whether significant differences are evident in the activity-
space-based contextual measures obtained from different 
models. Table  4 summarizes the significance of paired 
sample t tests for the contextual variables between the 
activity space models for the 844 participants. As shown, 
significant differences exist for most of the pairs of the 
activity space measures. However, there are also pairs 
of activity space models that do not yield statistically 

Table 2 The percentage overlap of  the  four activity space 
models (n = 844)

Administrative 
unit

Home 
buffer 
500 m

Individual 
home 
range

IREM

Administrative unit – 66.6 46.5 44.4

Home buffer 500 m 26.5 – 22.4 37.3

Individual home 
range

78.7 100 – 100

IREM 48.2 67.3 40.4 –

Fig. 2 The spatial overlap of all four activity space models used in this study
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significantly different measurement outcomes. Measure-
ment of LUM does not significantly vary between any 
pairs of activity space models. Further, the value for walk-
ability index does not significantly vary between some 
pairs of activity space models. The walkability index cal-
culated using IREM appears to be significantly different 

from the one obtained using the home range model. Nev-
ertheless, it does not seem to be significantly different 
from values obtained from the buffer and administrative 
boundary activity space model.

Regression analysis of health measures
In this section, we report the results of the regression 
analysis that explored how the contextual variables 
derived with different activity space models are associ-
ated with different aspects of health. To demonstrate 
whether the choice of activity space model influences the 
results, we compare the regression analysis results based 
on the significant associations found using the four activ-
ity space models.

Table 5 summarizes the results of the regression analy-
sis based on different activity space models. The coeffi-
cients found to be statistically significant (Table  5) vary 
greatly between different activity space models. Some of 
the associations found via different activity space mod-
els contradict with each other. Greenness was found to 
be positively associated with several domains of health 
when using IREM as the activity space model; however, 
an opposite trend (significant negative associations) was 
found when home buffer and, in one case, when adminis-
trative boundary were used as activity space models. 

The size of activity space appears to be positively asso-
ciated with several aspects of health when measured via 
IREM. It is noteworthy that the size of postal areas is 
based on administrative preferences, and circular buffers 
have arbitrary and static areas. Accordingly, the notion of 
size when using these two approaches was deemed irrel-
evant and, therefore, left out of the regression analysis.

Positive associations were found between the length 
of pedestrian and cycling routes within an activity space 
and walkability index of an activity space with different 
aspects of wellbeing. These associations were best found 
using the home range model. LUM was not found to be 
statistically significantly associated with wellbeing meas-
ures in most cases.

Discussion
The aim of this study was to examine whether the asso-
ciations between the built environment measures and 
health differ when individual exposure is assessed with 
several different spatial units of analysis. Earlier stud-
ies have concluded that the mixed results of the impact 
of the built environment on health can be at least partly 
due to the diverse use of different spatial units of analy-
sis aiming to capture the individual spatial exposure [18–
20, 23, 31]. There are only a few studies that have truly 
intended to study and overcome the contextual problems 
related to place exposure [23, 32].

Table 3 The spatial overlap of  the  four activity 
space models with  GPS activity spaces collected 
from a subsample of the study participants

Method Mean overlap 
% (overall)

Mean overlap % 
within locality threshold 
(4 km)

Administrative unit 38 59

Home buffer (500 m) 35 55

Individual home range 56 79

IREM 40 65

Table 4 The significance of  paired sample t tests 
for  the  contextual variables between  the  four activity 
space models

A significance level of 0.05 (with adjustment for multiple comparison p < 0.008) 
is used to judge whether two measures are significantly different. The italicized 
values are statistically significant

Admin. unit Buffer Home range IREM

Greenness

 Admin < 0.001 < 0.001 < 0.001

 Buffer < 0.001 < 0.001 < 0.001

 HR < 0.001 < 0.001 < 0.001

 IREM < 0.001 < 0.001 < 0.001

Size of activity space

 Admin < 0.001 < 0.001 < 0.001

 Buffer < 0.001 < 0.001 < 0.001

 HR < 0.001 < 0.001 < 0.001

 IREM < 0.001 < 0.001 < 0.001

Land use mix

 Admin 0.797 0.801 0.803

 Buffer 0.797 1.000 1.000

 HR 0.801 1.000 1.000

 IREM 0.803 1.000 1.000

Walkability index

 Admin < 0.001 < 0.001 0.803

 Buffer < 0.001 1.000 1.000

 HR < 0.001 1.000 < 0.001

 IREM 0.803 1.000 < 0.001

Pedestrian roads

 Admin < 0.001 < 0.001 < 0.001

 Buffer < 0.001 < 0.001 0.002

 HR < 0.001 < 0.001 < 0.001

 IREM < 0.001 0.002 < 0.001
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We compared two common residential and two novel 
activity space models as units of analysis to investigate 
whether differences exist in the associations between 
built environment features and perceived individual 
wellbeing outcomes. According to the results, all units 
of analysis differed from each other in terms of size, 
shape, and how they capture different contextual meas-
ures. These findings support the existence of the uncer-
tain geographic context problem when examining the 
association between the built environment and human 
health [18]. In addition, we found that the associations 
between commonly used built environment measures 
and perceived wellbeing outcomes differed when using 
an administrative unit, residential buffer, home range 
model, and IREM for assessing the individual environ-
mental exposure.

The four studied units of analysis—administrative unit, 
500-m residential buffer, home range model [33], and 
IREM [26]—varied significantly in their size and shape. 
Thus, all four models are very distinct from each other. 
In general, administrative units and residential buff-
ers manage to capture only a hypothetical individual 
exposure as these methods presume that individuals are 
exposed solely to the environment around their resi-
dency or within administrative boundaries. Both are 
static models and do not capture the dynamic nature of 
everyday human behavior [23, 26]. The administrative 
unit covered less than half and buffer only around one-
third of the area that the home range model and IREM 
captured, which was shown when the different models 
were overlapped with each other. The uncertain geo-
graphic context problem is evident for these kinds of 
static spatial units of analysis that cannot capture indi-
viduals’ true daily activities [23]. In contrast, the dynamic 
and people-based spatial models that use place-based 
data collected with online participatory mapping meth-
ods manage to capture the notions of activity spaces in a 
more individualized way [21, 26, 32, 33]. The home range 
model had the most overall overlap with other models. 
The home range model is an individual-specific bound-
ary method created to capture individual activity spaces. 
Thus, the home range model captures the complete geo-
graphic area where individuals report themselves mov-
ing around. However, the individual home range model 
fails to capture varying levels of place exposure as it does 
not account for any temporal aspects. In contrast, IREM 
captures the areas where an individual is exposed to the 
physical environment according to the reported activi-
ties, frequency of visitations, and modes of transport 
used. Thus, the areal coverage of IREM is smaller than in 
home range models, but its capability to capture precise 
individual exposure is superior to any other models stud-
ied here.

Comparison of the four different spatial units of analy-
sis with activity spaces delineated from GPS tracking 
demonstrated parallel results. The overall mean spatial 
overlap between the four studied models and a GPS 
activity space was highest for the novel people-based 
models. The home range model covered nearly 80% of 
the GPS activity space when a 4-km cutoff distance was 
applied to the GPS activity space. In comparison, the 
buffer covered only half of the same space. These results 
are in line with a study by Kestens et al. [32] where they 
found that both GPS and map-based questionnaires 
provide novel and suitable ways to collect daily mobility 
data and improve the exposure assessment of context-
specific health research. Yet, it is noteworthy that GPS 
data collections are highly costly and time consuming. 
Thus, online map-based questionnaires can provide 
cost-efficient solutions for health research to delineate 
individual activity spaces in studies where context plays 
a significant role.

The differences of the contextual measures obtained 
from different models reassert the results of previous 
studies [20, 23]. We found significant differences in most 
built environment measures calculated using different 
activity space models. The amount of green space, the 
size of the activity space, and the length of pedestrian 
and bicycle roads differed significantly between all the 
activity space models. In their study, Zhao et al. [23] also 
found evidence that built environment measures dif-
fered between several activity space models. Neverthe-
less, there were a few exceptions in our results. LUM did 
not significantly vary between any pairs of activity space 
models. This might be because of the land use character-
istics of the study area, which were rather mixed within 
the whole HMA in general. The conventional single-use 
zoning does not exist similarly in the study area when 
compared to North America where LUM has been com-
monly used as a well-fitting measure in environmental 
health studies. Additionally, a recent large international 
comparison found LUM not being related to PA [7]. Fur-
ther, walkability index did not significantly differ between 
the static models and the activity space models. This 
might be related to the residential self-selection bias 
[47], where people who prefer walking may seek out to 
both live in and move around in walkable areas. In this 
case, respondents who prefer walking and active lifestyles 
seek to live in areas that are highly walkable (captured by 
administrative unit and home buffer) and move around 
in highly walkable areas (captured by individual home 
range model and IREM).

The associations between commonly used built envi-
ronment measures and perceived wellbeing outcomes 
differed when using an administrative unit, residential 
buffer, home range model, and IREM for assessing the 
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individual environmental exposure. The association 
between green space, LUM, walkability index, length 
of pedestrian and cycling routes, and wellbeing was 
assessed with all four different models. Additionally, the 
association between the size of the exposure model and 
health was assessed.

Only two very distinct models showed any results 
between the green space and health. When the individual 
exposure was assessed with IREM, a positive associa-
tion between green space and health was found. For the 
administrative unit, a negative association was found. 
Thus, the amount of green space was found positively 
associated with respondents’ perceived overall health, 
functional capability, and quality of life when the expo-
sure was assessed with a unit of analysis that accounts for 
the true individual exposure and activities undertaken in 
a certain place. On the other hand, the amount of green 
space was found negatively associated with respondents’ 
perceived wellbeing measures when administrative unit 
was used as a spatial unit of analysis. Thus, higher green 
area proportions around the residency decreased the 
perceived wellbeing. This is a rather contradictory result 
compared to previous studies on nature, green space and 
health [48, 49]. These results suggest that the true expo-
sure to green instead of availability of green spaces are 
important to wellbeing. Thus, the accessibility, quality, 
and desirability instead of quantity of green spaces could 
be the focal aspects in planning healthy cities [50]. Addi-
tionally, these results can be explained by the fact that 
residential areas with vast green land uses in HMA are 
mostly fringe suburban areas surrounded by large for-
ests and are highly car-oriented and less connected than 
the core urban areas. Thus, it might be that the quality 
of certain green areas instead of quantity of green space 
around one’s home matters to the wellbeing of the people 
living in HMA [9].

LUM was positively associated with perceived func-
tional capability when measured with administrative 
unit but not with any other unit of analysis or any other 
perceived health measure. LUM alone is perhaps not an 
applicable measure because its association with health, 
PA, and neighborhood satisfaction has shown no signif-
icant associations [7, 51]. Once LUM is combined with 
other urban structural measures, such as building and 
residential density, it forms a more applicable measure 
to capture the true mixed character of the urban areas, 
which is not limited only to the horizontal mix of land 
uses but extends also to the mix of vertical urban space 
[52].

Walkability index and the length of pedestrian and 
bicycle roads were found to have a positive correlation 
with most of the perceived wellbeing measures when 
studied with the home range model as a unit of analysis. 

Thus, the more walkable the complete geographical area 
of the activity space is, the healthier, functionally more 
capable, and happy the respondents perceive themselves. 
Interestingly, no association was found between walk-
ability index and perceived health when IREM was used 
as a unit of analysis. This discrepancy between the two 
activity space measures warrants further investigation 
because the results suggest that true exposure to walk-
able environments does not associate with health but that 
it is the availability and supply of highly walkable envi-
ronments that associates with perceived health. Future 
studies investigating how walkability potential of activity 
spaces affect PA behavior of individuals compared to the 
exposure to walkable physical environments would con-
tinue to advance the understanding of the built environ-
ment relationship with health behavior.

By using the novel activity space models, future 
research could capture the various health promotive 
aspects of (urban) environments. The health impacts 
of the environment are complex, as the environment 
can affect all the physical, mental, and social health and 
wellbeing of individuals as well as the whole society [2, 
6, 53, 54]. However, different characteristics of the envi-
ronment can support mental health [10] compared to 
those that support physical health [7]. Exposure to green 
areas have been shown to reduce stress levels, and at the 
same time, well-connected, walkable, and dense urban 
environments support PA. These characteristics of the 
physical environment and their association to individu-
als’ wellbeing can be captured with the different spatial 
modelling techniques.

In line with previous research, the size of activity 
space was found to be positively associated with dif-
ferent aspects of wellbeing. This is related to the actual 
exposure measurement because the size shows statisti-
cally significant associations with wellbeing only when 
it is measured with IREM. Given the more concentrated 
characteristic of IREM, and the fact that the use of active 
travel modes contribute positively to the exposure to the 
surrounding areas, this association could be attributed to 
the greater extent of active travel. Active mobility is an 
important source of daily PA for many people and, thus, 
may improve general health [55–59]. A similar conclu-
sion cannot be drawn from less concentrated activity 
space models, such as home range, because a bigger size 
of activity space in these models is more likely to be asso-
ciated with car use, which is found to impede PA [60].

This study aimed at investigating the challenges and 
opportunities of different spatial units of analysis—not 
determining which one should be used. Our results show 
that different models of activity spaces result in consid-
erably different measurements of built environment. In 
turn, the differences derived from the use of different 
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spatial units seem to considerably affect the associa-
tions between environment characteristics and wellbe-
ing measures. Although it is not easy to argue about the 
correctness of these measurements, what is evident is 
that they can tell us different things. While some meth-
ods can be used to determine the availability of certain 
environmental opportunities, others can provide us with 
insight into their relevance based on the actual exposure. 
Therefore, one might argue that the choice of spatial unit 
should be made based on the context and the contents 
of a study. Nevertheless, our findings suggest that over-
simplistic and static residential units of analysis, such as 
administrative unit and home buffer, may not be suitable 
approaches for measuring the activities of individuals 
and, thus, capturing individual environmental exposure 
[23].

Furthermore, a growing body of research has used 
GPS data to capture the notions of activity spaces and 
the true environmental exposure of human behavior 
[22, 61, 62]. However, the resources, costs, and time that 
GPS data collection and acquisition demands often make 
it impractical for studies requiring large data sets. The 
activity spaces generated from a participatory mapping 
survey showed general consistency with the GPS activ-
ity spaces in this study and a study by Kestens et al. [32]. 
Thus, studying environmental exposure through partici-
patory mapping seems accurate and precise compared to 
GPS but is less demanding, costly, and time consuming.

Some limitations of this research need to be acknowl-
edged. This study examined only the association between 
the physical environment and perceived wellbeing, but 
other various background factors, such as jobs, fam-
ily situations, and socioeconomic status, also play a role 
in individuals’ health. Previous studies have shown that 
demographic variables can mediate the relationships 
between health behavior and environmental variables [9]. 
Future research is warranted to investigate the multi-level 
influences of sociodemographic, built environment, and 
individual exposure variables on health. This study ana-
lyzed only a limited number of simple built environment 
variables in relation to perceived wellbeing. Using more 
complete and complex built environment variables may 
reveal more in-depth associations between the environ-
ment and health. Moreover, the comparisons made with 
GPS tracks are only based on a few participants. Future 
studies could benefit from a broader comparison based 
on a larger subsample of participants. In addition, the 
data used for this study were collected only from older 
adults aged 55–75. It would be interesting to see future 
studies exploring the presence of similar patterns in other 
age groups.

Conclusions
The notion of the uncertain geographic context prob-
lem has been linked to the conventional spatial units of 
analysis used in multidisciplinary research fields study-
ing the questions of health geographics. In this study, 
we applied two common residential and two novel 
activity space models as units of analysis to investi-
gate whether there exist differences in the associations 
between built environment features and perceived 
individual health outcomes. According to the results 
of this study, different spatial units of analysis yield 
distinct results regarding the association between the 
built environment and health. Walkability index and 
the length of pedestrian and bicycle roads were found 
to positively correlate with perceived wellbeing meas-
ures only when the spatial context was captured with 
a home range model [33]. In contrast, a positive asso-
ciation between green spaces and perceived wellbeing 
was found when the individual exposure was assessed 
with IREM, which is a novel dynamic and people-based 
spatial model using data collected through online par-
ticipatory mapping method to capture the notions of 
activity spaces [25].

This study investigated the challenges and opportuni-
ties of different spatial units of analysis and concludes 
that there are several suitable units of analysis that can 
be used to capture the human exposure. While one can-
not simply argue about the correctness of a certain unit 
of analysis, what is evident is that they can tell us differ-
ent things. The essential challenge that the broad field 
of health geographics needs to overcome is the compa-
rability of different studies and results; using diverse, 
not standardized spatial units of analysis and measures 
makes comparisons hard if not impossible. However, as 
the results of this and previous studies show, research-
ers should not rely only on the easy and over-simplistic 
spatial units of analysis [18, 20, 22, 23, 32]. For a bet-
ter assessment of contextual effects, researchers should 
more carefully consider different spatial units and eval-
uate their implications for the research outcomes.
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