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EDITORIAL

An overview of GeoAI applications in health 
and healthcare
Maged N. Kamel Boulos1* , Guochao Peng1 and Trang VoPham2

Abstract 

The moulding together of artificial intelligence (AI) and the geographic/geographic information systems (GIS) dimen-
sion creates GeoAI. There is an emerging role for GeoAI in health and healthcare, as location is an integral part of 
both population and individual health. This article provides an overview of GeoAI technologies (methods, tools and 
software), and their current and potential applications in several disciplines within public health, precision medicine, 
and Internet of Things-powered smart healthy cities. The potential challenges currently facing GeoAI research and 
applications in health and healthcare are also briefly discussed.
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Introduction
Artificial intelligence (AI), such as methods in machine 
learning, has been increasingly used in health and health-
care, particularly with the rise of high-performance and 
cloud computing capabilities [1, 2]. Health intelligence 
refers to the specific application of AI and data science 
methods and tools to provide accurate, efficient, and pro-
ductive insights into healthcare and medicine [3]. Health 
intelligence applications have included social media ana-
lytics for syndromic surveillance [4], predictive modelling 
to identify populations at high risk for disease [5], mobile 
health for healthcare delivery [6], and medical imaging 
interpretation [3, 7].

Broadly, health intelligence can be characterised as 
applications of AI to improve health at the population 
level and at the individual level. Population-level appli-
cations include those aimed at promoting public health 
such as through the disciplines of environmental health, 
epidemiology, genetics, social and behavioural sciences, 
and infectious diseases. In contrast, individual-level 
applications can be geared towards precision medicine, or 
disease management that considers individual variability 

in genetics, environment, and lifestyle [3, 8]. Regardless 
of the target scale of the population or individual, loca-
tion or place is an important consideration in health 
intelligence as it can play a significant role in health. The 
locations in which we live, work, and spend our time are 
associated with factors, including but not limited to the 
built environment, environmental exposures, and social 
determinants, that may impact our health. Incorporating 
location-based information can allow us to better under-
stand risk factors for disease and identify novel targets 
for prevention efforts.

Spatial science offers tools and technologies that enable 
us to understand, analyse, and visualize real-world phe-
nomena according to their locations [2]. Geospatial arti-
ficial intelligence (GeoAI) combines methods in spatial 
science (e.g., geographic information systems or GIS), AI, 
data mining, and high-performance computing to extract 
meaningful knowledge from spatial big data [2, 9]. GeoAI 
represents a focused domain within health intelligence 
that incorporates location to derive actionable informa-
tion that can be used to improve human health. A com-
mon theme across GeoAI applications at the population 
and individual level is the use of novel sources of spatial 
big data, such as social media, electronic health records, 
satellite remote sensing, and personal sensors, to advance 
the science of public health (especially in the context of 
‘smart healthy cities’) and potentially precision medicine, 
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creating new opportunities to more comprehensively 
answer questions typically tackled in these fields as 
well as unique opportunities to answer new, emerging 
questions.

The purpose of this editorial is to provide an overview 
of GeoAI technologies (methods and tools, and soft-
ware), and current and emerging/potential applications 
of GeoAI in several disciplines within public health and 
precision medicine, as well as IoT (Internet of Things)-
powered smart healthy cities. Smart healthy cities gather, 
generate and consume large amounts of big health and 
environmental data. GeoAI can play a key role in making 
sense of these data through intelligent, location-based big 
data analytics.

GeoAI technologies
Geospatial data refers to data containing a geographic 
component that identifies locations (e.g., coordinates, 
addresses, and postcodes) or indicates geographically 
referenced features and conditions, such as the popula-
tion of a district, seasonal weather of a region, number of 
vehicles passing a highway intersection, and geo-tagged 
social media data [10]. National and local governments 
were historically the main provider of geospatial data, but 
it is becoming common for geospatial data to be acquired 
and generated by commercial enterprises, academic 
researchers, and non-profit organisations [10]. More 
recently, IoT sensors and devices deployed in modern cit-
ies represent novel and alternative sources of generating 
geo-tagged big data [11]. It is therefore meaningful and 
imperative to apply robust GeoAI technologies to pro-
cess, analyse, and make sense of such increasing amounts 
of spatial big data in real time [11].

Machine learning, deep learning and data mining are 
essential methods forming the foundation of GeoAI. In 
particular, machine learning includes AI methods and 
algorithms for computers to obtain knowledge by itera-
tively extracting and learning from patterns hidden in 
raw data [12]. Deep learning is widely perceived as a cut-
ting-edge type of machine learning that allows computers 
to simulate brain function to understand complex con-
cepts in the real world more effectively [12]. Data mining 
techniques were developed as part of machine learning 
to explore new patterns from large datasets and to make 
appropriate recommendations (e.g., recommender sys-
tems in e-commerce sites) [12]. GeoAI tools and appli-
cations aim to utilise all of these methods as relevant to 
obtain valuable information and knowledge from spatial 
big data for specific analytical needs [12]. Such GeoAI 
tools and software have been developed and applied in 
different domains and contexts, including for the mili-
tary, commercial businesses, and public and civic sectors.

For example, Situational Awareness Geospatially Ena-
bled (SAGE) is a military application and a GeoAI tool 
developed by the US Army Engineer Research and Devel-
opment Centre [13]. The SAGE tool utilises and analy-
ses four types of geospatial data (e.g., elevation, terrain 
categorization, road names, and map imagery) to create 
tactical information for understanding the operational 
environment and supporting military decision making 
(e.g., suggesting feasible and safe routes for commanders 
to send troops) [13]. In addition, the Ship Rider program 
launched by the US National Geospatial-Intelligence 
Agency (NGA) has been developing, promoting and 
applying tools to deliver on-demand GeoAI outputs to 
the US Navy [14]. The program incorporates mapping, 
charting, geodesy and imagery into geospatial intelli-
gence analysis and allows the Navy to visualise and obtain 
critical spatial insights at sea [15].

In the commercial sector, the combination of business 
data, operational data and geospatial data with analytics 
and mapping visualisations has been suggested to pro-
vide valuable insights across many industries [16]. There 
are several industrial use cases that have demonstrated 
how GeoAI could enhance existing business intelligence 
software and improve business efficiency and com-
petitiveness. For example, GeoAI tools (e.g., SAS Visual 
Analytics) were advantageous in sales forecasting, con-
sumer demand prediction, and marketing analysis, ena-
bling sales managers to identify locations of customers 
to provide the highest profit gains [17]. Beyond sales and 
marketing, GeoAI tools for visual analytics can add the 
“where” component to optimise other business processes 
in the product lifecycle, including manufacturing, assem-
bling, logistics and distribution [16]. Based on deep geo-
spatial insights, business managers can improve decision 
making related to manufacturing, storage and distribu-
tion plans, ensuring the production and delivery of end-
products to customers using the most economical routes 
in the shortest amount of time [18].

As the primary provider of geospatial data since 1990s 
[10], the public and civic sector has pioneered the appli-
cation of GIS and more recently GeoAI technologies. In 
particular, the US government has been utilising geo-
spatial intelligence tools for generating city develop-
ment plans, mapping foreclosure and crime rates, and 
monitoring and responding to natural hazards such as 
floods, wildfires and hurricanes in real-time [10]. Fur-
ther, less developed countries, such as Ecuador, have 
been using geospatial intelligence for health planning 
and determining regional distribution of health services 
[19]. The World Health Organization (WHO) has been 
applying geospatial mapping tools for global applications, 
including for the Ebola virus disease outbreak in 2014, to 
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monitor and respond to the emergence of new disease 
cases in different countries over time [20].

GeoAI for public health
Public health seeks to promote health and prevent dis-
ease at the population level, involving multiple special-
ised disciplines that aim to understand and/or intervene 
on different aspects of population health. Several exam-
ples of recent and emerging GeoAI applications in the 
disciplines of environmental health, epidemiology, genet-
ics, social and behavioural sciences, and infectious dis-
eases are provided below.

In environmental health, GeoAI has been used to con-
duct accurate and highly resolved modelling of environ-
mental exposures, including measuring exposures that 
have historically been difficult to capture [2]. For exam-
ple, GeoAI methods are being applied to capture fea-
tures of the built environment (i.e., urban green space 
or natural environments) [21]. To address current limi-
tations regarding the lack of green space measurements 
at the highly granular street scale, one recent study cal-
culated Green View Index (GVI) measures from Google 
Street View panorama images in Portland, Oregon, US 
and compared GVI values to conventional green space 
measures such as normalised difference vegetation index 
(NDVI), distance to parks, and neighbourhood socio-
economic status [21]. Correlations between GVI and 
other green space measures were low, suggesting that 
GVI captures unique information not otherwise ascer-
tained using existing methods. Future research build-
ing on this work includes developing machine learning 
approaches to identify specific green space features (e.g., 
trees) and complex characterizations of streetscapes 
[21]. In another study designed to address the paucity of 
building maps in developing countries for sustainabil-
ity goals related to disaster relief and poverty reduction, 
deep learning (convolutional neural networks or CNNs) 
were applied to WorldView-2 satellite remote sensing 
images and volunteered geographic information (VGI) 
to automate map generation for buildings in Nigeria [22]. 
Future research could scale these approaches to examine 
larger study areas to conduct population-based research 
and to incorporate more time points to produce a high 
spatiotemporal resolution characterization of the built 
environment.

Machine learning has experienced an increased pres-
ence in air pollution exposure modelling, allowing for 
methodologic advantages such as modelling nonlinear 
associations and the integration of multiple spatial big 
data sources to improve predictive performance [23]. For 
example, a neural network was used to model daily par-
ticulate matter < 2.5 microns in diameter  (PM2.5) levels in 
the US using multiple predictors including satellite-based 

aerosol optical depth (AOD) from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) aboard the 
Earth Observing System satellite [24]. Random forest 
models have also been used to estimate daily  PM2.5 con-
centrations [25, 26]. A geographically-weighted gradient 
boosting machine (GW-GBM) algorithm was used to 
model  PM2.5 exposures in China, accounting for spatial 
non-stationarity in associations between predictors and 
 PM2.5 using spatial smoothing kernels [2, 27].

Beyond satellite remote sensing, mobile air pollution 
sensors is another novel source of spatial big data that has 
been used to improve air pollution exposure modelling 
[28]. Urban air pollution concentrations exhibit high var-
iability over short distances due to unevenly distributed 
emission sources, dilution, and physicochemical trans-
formations [28]. Air pollution sensors were integrated 
with Google Street View vehicles to sample every street 
in Oakland, California, US for air pollution mapping of 
NO,  NO2, and black carbon at a 30 m spatial resolution 
[28]. Spatial data mining techniques were used to explore 
determinants of the spatial patterns in the measured lev-
els of air pollution [28]. Further, personal exposure to air 
pollution has been measured using wearable devices (i.e., 
wearables), providing continuous measurements through 
portable air pollution sensors attached to wristbands, 
belts, and backpacks [29]. For example, a personal sen-
sor for ultrafine particles (UFP; < 100  nm in diameter) 
measured pollutant levels among adolescents in Cin-
cinnati, Ohio, US [29]. The UFP sensor also incorpo-
rated a Global Positioning System (GPS) receiver, which 
appended geolocations to corresponding UFP measure-
ments [29]. High-dimensional spatial big data gathered 
by wearables can be processed and analysed using data 
science methods and incorporated into epidemiological 
studies studying disease risk as described below.

In epidemiology, GeoAI has been used to describe and 
analyse the spatial distribution of diseases and to study 
the effect of location-based factors on disease outcomes. 
For example, to facilitate hypothesis generation related 
to the aetiology of preterm births, machine learning 
(K-means clustering) was used to determine spatiotem-
poral patterns of gestational age at delivery for 145 mil-
lion births in over 3000 US counties from 1971 to 2008 
using National Centre for Health Statistics Natality 
Files [30]. In another study in the Ivory Coast of Africa, 
researchers aimed to better understand determinants 
of human immunodeficiency virus (HIV) prevalence 
using machine learning (support vector regression) to 
extract mobility and connectivity data from georefer-
enced mobile phone data [31]. These extracted features 
were analysed in relation to HIV prevalence rates at the 
department level, where study authors found that factors, 
such as the spatial area covered by the phone user and 
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overall migrations, were associated with HIV prevalence 
[31].

Environmental health also has close ties with epide-
miology, as measured and/or modelled environmental 
exposures can be used for exposure assessment in study 
populations as part of environmental epidemiologi-
cal studies. For example, a recent study used CNNs on 
Google Maps Static images and Google Places (of inter-
est) to extract natural and modified elements of the built 
environment (e.g., buildings, crosswalks, street green-
ness) to study in relation to Census tract-level obesity 
prevalence in the US from the Centres for Disease Con-
trol and Prevention (CDC) 500 Cities project [32]. This 
research can inform neighbourhood-level interventions 
to increase physical activity and access to healthy food 
outlets to address the obesity epidemic. Another epide-
miological study linked deep learning-based air pollution 
exposure models for  PM2.5 and ozone with ZIP Codes 
from Medicare big data to examine their associations 
with mortality risk in the US [33]. These examples illus-
trate the numerous opportunities for GeoAI to model 
environmental exposures that can be subsequently linked 
with various data sources with information on disease 
outcomes (and potential confounders) to conduct epide-
miological research.

Furthermore, future epidemiological research could 
harness emerging sources of spatial big data to examine 
research questions regarding disease aetiology, poten-
tially providing new insights into novel risk factors. For 
example, personal sensing collects data using the sensors 
embedded in mobile phones as well as through weara-
bles such as Fitbits [34]. Spatial energetics is a field that 
focuses on collecting high spatiotemporal resolution 
data on location and time-matched energetics from GPS, 
accelerometery, and GIS to identify spatial-based fac-
tors that may be associated with physical inactivity and 
obesity [35]. GeoAI could be used to process and analyse 
these location-based data to determine what types of 
activities at certain times and exposures at specific loca-
tions for different types of people are relevant to health 
outcomes. Other novel spatial big data sources include 
information from ride sharing services such as Uber and 
Lyft. There are approximately 5.5 million Uber rides and 
1 million Lyft rides completed each day [36]. Location is 
a key aspect of ride sharing as it relates to pick-ups and 
drop-offs; this information can be used to address epide-
miological research questions related to injury, for exam-
ple. Some research suggests that areas characterised by 
higher usage of ride sharing may be associated with lower 
incidence of traffic-related accidents, although improved 
study designs as well as data (i.e., analysing ride sharing 
rates rather than dates of rollout) are needed [37]. Fur-
ther, food delivery as part of ride sharing services (e.g., 

Uber Eats) may also provide interesting insights into its 
potential role in promoting sedentary behaviours and 
childhood obesity [38].

In genetics, deep learning has been applied to study-
ing fields such as functional genomics (e.g., predicting 
the sequence specificity of DNA- and RNA-binding pro-
teins) [39]. Gene-environment interaction (GxE) studies 
represent an opportunity to apply GeoAI towards exam-
ining the intersection of genetics and the environment 
(through location-based information) on health. GxE 
studies provide insights into understanding disease, from 
disease biology to identifying genetic subgroups with 
higher exposure-specific disease risk [40]. A current limi-
tation of GxE research includes the complexity of meas-
uring environmental exposures such as accounting for 
the appropriate temporality of environmental exposures, 
measurement error, and limited environmental exposure 
variability [40]. Many of the aforementioned novel spatial 
big data sources can be viewed as potential ways through 
which to measure the exposome, or the totality of human 
environmental (i.e., non-genetic) exposures from concep-
tion onwards [41]. For example, location-based measures 
from remote sensing, smartphone apps, and personal 
exposure sensors could be incorporated into GxE studies 
for exposure assessment during time periods relevant to 
the disease of interest.

In social and behavioural sciences, GeoAI has been 
used to help identify social and behavioural determinants 
of health as well as to conduct interventions using loca-
tional information. Electronic health records (EHRs) are 
a valuable longitudinal population-based big data source. 
EHRs allow for the linkage of spatial data to geographic 
variables such as ZIP Codes as patient addresses are rou-
tinely checked and updated for billing purposes [42]. For 
example, an analysis of EHRs from the Duke University 
Health System and Lincoln Community Health Centre in 
the US used machine learning (random survival forests) 
to determine if neighbourhood-level socioeconomic sta-
tus (SES) improves risk prediction of health outcomes 
such as emergency department visits and inpatient vis-
its [43]. US Census Bureau American Community Sur-
vey data were used to determine neighbourhood-level 
SES by calculating the Agency for Healthcare Research 
and Quality SES index at the Census tract level. Another 
study used machine learning to implement an interven-
tion for depression [44]. A mobile phone app was devel-
oped using machine learning to predict patient mood, 
emotions, cognitive/motivational states, activities, envi-
ronmental context, and social context based on over 30 
phone sensors such as GPS [44]. Deep learning (neural 
networks) have also been used to identify social deter-
minants (i.e., income, wealth, education) that predict 
health outcomes including systolic blood pressure, body 
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mass index, waist circumference, and telomere length 
in the US-based Health and Retirement Study [45]. This 
approach could incorporate location-based measures, 
including area-level SES, as potential social determinants 
to investigate in relation to health.

Dating apps, such as Tinder, are a feature of modern 
dating that could be a novel data source to answer health-
related research questions. There are over 4 million 
paying users on Tinder [46]. Tinder is an example of a 
proximity-based dating application that sets up a specific 
radius using geolocation technology to allow its users to 
find potential partners located within their vicinity [47]. 
These georeferenced data could be used to examine asso-
ciations between geographic variation in dating app use 
and dating violence and abuse [48] or depression [49].

GeoAI has been used in infectious disease research 
for modelling or prediction of disease occurrence and 
for disease surveillance. Deep learning recurrent neu-
ral networks (RNNs) were used for real-time influenza 
forecasting at regional and city spatial scales in the US 
using spatial big data on Google Flu Trends (weekly esti-
mates for different cities) and climate (e.g., precipitation, 
temperature, sun exposure) from the National Climatic 
Data Centre [50]. Another application utilised geotagged 
tweets from Twitter and the CDC influenza-like illness 
(ILI) dataset to predict real-time regional ILI in the US 
using an artificial neural network (ANN) optimised by an 
artificial tree algorithm [51]. The geotagged tweets were 
based on the location in the profile of the Twitter user 
who tweeted the message, the location where the user 
sent the tweet and enabled their geographical location 
tracking in the Twitter App, or the location mentioned in 
the content of the tweets. In another study, an ensemble 
machine learning approach was used to estimate state-
level influenza activity in the US, combining a self-cor-
recting statistical method with influenza-related Google 
Trends, cloud-based athenahealth EHRs, and historical 
flu trends, as well as a network-based approach leverag-
ing spatiotemporal trends in historical influenza activity 
[52].

Machine learning (support vector regression) was used 
for dengue fever forecasting in China using data on cli-
mate, weekly dengue fever cases, and Baidu search que-
ries [53]. Validation showed that epidemics during the 
previous 12  weeks and the peak of the 2014 large out-
break were accurately forecasted. Another study devel-
oped a machine learning model called FINDER to detect 
foodborne illnesses using anonymous and aggregated 
Google web search and location data, estimating the 
fraction of people who visited a particular restaurant 
and who subsequently searched for terms indicative of 
food poisoning (to identify potentially unsafe restau-
rants) [54]. This information was used to focus restaurant 

inspections, showing that restaurants identified by 
FINDER were more likely to be deemed unsafe during 
the inspection compared to existing methods. A real-
time syndromic surveillance system was developed to 
detect disease outbreaks earlier, where deep learning 
classified health-related geotagged Tweets (e.g., tweets 
with news sources with location as part of the news arti-
cle) and allowed for the geovisualisation of health symp-
toms [4]. This system demonstrated an ability to detect 
ILI symptoms, which were confirmed from the CDC 
Morbidity and Mortality Weekly Reports (MMWR). 
Future research to improve on this surveillance system 
will incorporate disease-specific information (e.g., mode 
of transmission) to enhance disease forecasting accuracy.

GeoAI for precision medicine
The practice of medicine involves making decisions 
based on obtaining as much information about a 
patient’s health as possible [55]. Precision medicine is 
an effort to tailor prevention and treatment strategies 
through considering individual variability in genetics, 
environment, and lifestyle [8]. Applications of AI in 
precision medicine have included using machine learn-
ing for prediction of patient diagnoses and outcomes 
[56]. Opportunities to incorporate GeoAI can be found 
in emerging research initiatives focused on the integra-
tion of mobile health (mHealth) in precision medicine. 
mHealth is the application of mobile technologies (e.g., 
phones, tablets) to support and enhance the perfor-
mance of healthcare and public health practice [57]. 
One research focus of the National Institutes of Health 
(NIH) Big Data Centre of Excellence on Mobile Sensor 
Data-to-Knowledge (MD2  K) is the design of sensor-
triggered mHealth interventions, which could integrate 
information on sensor-based environmental exposures 
such as light, noise, chemicals, etc. to improve the tem-
poral precision of mHealth-based precision medicine 
[58]. For example, MD2  K developed mCerebrum, a 
configurable smartphone software platform support-
ing reliable high-frequency data collection from mobile 
and wearable sensors and real-time processing of these 
data for sensor-triggered, just-in-time adaptive inter-
ventions [58]. Another example of mHealth incorpo-
rating location-based exposures is AirRater, which is 
an integrated online platform that combines environ-
mental monitoring, symptom surveillance, and notifi-
cations of changing environmental conditions through 
a smartphone app [59]. AirRater modelled  PM2.5, pol-
len, and meteorological variables using high temporal 
resolution environmental monitoring data and spatial 
interpolation methods (e.g., kriging). Participants, most 
of whom reported having either asthma or allergic 
rhinitis, created saved locations via the app and were 
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sent notifications when these saved locations experi-
enced elevated  PM2.5 or pollen levels. AirRater users 
reported developing a better understanding of how 
environmental conditions affect their health, which 
sometimes prompted action such as their timely use of 
medications.

Another potential application of GeoAI for precision 
medicine is through geomedicine, a term that has been 
used to describe considering the importance of a patient’s 
place history in disease diagnosis and treatment [60]. 
Clinicians could be delivered information on a patient’s 
environmental exposures, which could help clinicians 
identify environmental factors that may influence a 
patient’s health. Such endeavours may include clinicians 
(having access to patient residential histories) providing 
patients with information regarding potential ambient 
exposures to environmental risk factors based on where 
they live and work—and these environmental exposures 
could be derived via GeoAI technologies. However, bar-
riers to such applications include clinical acceptabil-
ity, particularly as the translation of precision medicine 
into clinical care and health policy in general has lagged 
behind the pace of scientific discoveries [40]. Yet acceler-
ations in this area may be likely, as the cost of sequencing 
the human genome has decreased substantially in recent 
years and more patients are expected to survey their own 
personal genomes (e.g., 23 and Me genetic testing) as a 
means to monitor and improve their personal health 
[61]. Potentially informed by GxE research, patients who 
discover genetic susceptibility to particular diseases, for 
example, may benefit from information regarding loca-
tion-based environmental exposures that may be espe-
cially damaging to their own personal health [62].

A notable research endeavour in precision medicine is 
the NIH All of Us Research Program, which aims to col-
lect data from one million or more people living in the 
US to accelerate research to improve health outcomes, 
advance the development of new disease treatments, and 
contribute to evidence-based research to develop more 
precise preventive care and medical treatments [63]. 
One area of focus is using mHealth technologies to cor-
relate activity, physiological measures, and environmen-
tal exposures with health outcomes, which represents 
an opportunity to incorporate location-based exposures, 
and thus GeoAI technologies, into precision medicine 
research.

GeoAI for IoT‑powered smart healthy cities
IoT-powered smart cities rely heavily on the usage of sen-
sors that can be embedded into buildings, roads, vehi-
cles, devices, plants, animals and human bodies turning 
these physical objects into digitally connected “things” 
[11]. These IoT sensors deployed in cities lead to the 

generation of a huge amount of real-time data, which are 
often geo-tagged or geo-located. GeoAI is essential for 
processing and making sense of such geospatial and real-
time big data, and support the smart vision of cities. For 
example, cities such as Barcelona [11], New York [64] and 
Dublin [65] have been adopting smart/connected bins 
with wireless sensors to detect and monitor trash levels 
in real time. With the support of GeoAI, trash collectors 
will then be informed and constantly updated regarding 
optimal routes for garbage collection in locations that 
require attention. In this scenario, the combination of 
IoT big data and GeoAI allows cities to minimise waste 
management costs and effort with improved efficiency 
and smartness [11].

In light of this discussion, smart city initiatives include 
inherent components for a healthier environment, refer-
ring to the concept of smart healthy cities that aim to 
improve the quality of city lives and enhance wellbeing of 
citizens [11]. The GeoAI applications in public health and 
precision medicine discussed above can all contribute 
to make smart healthy cities a reality. The fundamental 
aim should be to expand and integrate GeoAI endeavours 
in public health and precision medicine with other IoT 
infrastructures deployed in smart cities to facilitate large-
scale effects at the population level.

For example, in Barcelona, a city-wide network of IoT 
sensors and connected devices (e.g., smart bins, smart 
streetlights with embedded air quality monitoring sen-
sors, smart parking spots, and high-resolution cameras), 
provides valuable real-time data on noise, air quality and 
other types of environmental pollutants as well as the 
flow of citizens and traffic conditions, covering diverse 
locations across the city [11]. The comprehensive analysis 
of these geo-tagged IoT data can allow local authorities 
to identify the most crowded and polluted areas in the 
city at different time points, enabling instantaneous deci-
sion making (e.g., actively changing driving speed limits 
in busy intersections) to ease traffic pressure and reduce 
environmental burden. In addition, the integration of 
health big data (e.g., EHRs, mHealth and wearable sens-
ing data) with city IoT infrastructure and GeoAI tools 
can allow local authorities and policy makers to enhance 
city development plans to distribute and improve pub-
lic services related to health and transportation (e.g., 
targeted development of hospitals and care centres 
proximate to local transportation in areas with a large 
population requiring caring needs). In addition, when 
responding to city emergencies and disasters, GeoAI 
tools can be used to process and analyse geo-tagged IoT 
datasets, generating city maps for navigating the affected 
areas and obtaining contextual and real-time information 
(e.g., traffic and injured/patient conditions) for emer-
gency responders [66].
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The integration of health big data and IoT sensing 
data could maximise the utility of GeoAI in realising the 
vision of smart healthy cities. However, such integration 
may not be easily achievable in practice. For example, 
China has initiated over 700 smart city projects in more 
than 500 cities since 2012. This endeavour led to the 
emergence of hundreds of smart city apps and services 
on health and transportation [67]. While many Chinese 
cities have expressed an interest in integrating their vari-
ous local smart city apps into one single platform, these 
attempts remain in preliminary stages [67]. The absence 
of adequate standards and protocols for communication, 
integration, interoperability and control is a major barrier 
hindering seamless integration of IoT systems and appli-
cations in smart cities [11, 68], which together with data 
privacy and methodological issues discussed below, can 
influence the development and usage of GeoAI tools in 
IoT-powered smart healthy cities.

Potential challenges
The US NIH is expected to fund more research into 
mobile imaging, pervasive sensing, social media, and 
location tracking in the future [69]. As massive amounts 
of data continue to be captured and collected, issues 
related to data privacy are paramount. Ethical frame-
works are also required to appropriately inform study 
participants of risks and to protect patient privacy. Stand-
ards for securing and sharing research data collected by 
commercial devices and apps should also be addressed.

A methodological challenge is the lack of labelled 
training data for AI algorithms. In particular, supervised 
learning involves predicting the label or response of each 
data point using a set of labelled training examples [39]. 
Training data are important to accurately identify geo-
graphic features from input data. There are initiatives 
in place to facilitate this process, including Google’s 
human labelling service that allows human operators to 
label images. Importantly, as AI methods becomes more 
pervasive in clinical research, the role of subject matter 
expertise becomes imperative to avoid the uninformed 
use of big data as part of AI algorithms to produce results 
[2, 70]. Domain expertise is needed to avoid erroneous 
discoveries and to properly understand the relationships 
being modelled. Although GeoAI is valuable for discov-
ery and hypothesis generation, there is a significant need 
for well-designed studies and use of appropriate data to 
confirm any findings from this research [70].

Conclusions
There is an emerging role for GeoAI in health and 
healthcare as location is an integral part of both popu-
lation and individual health. Novel sources of spatial big 
data, including social media, satellite remote sensing, 

and personal sensing, are being (and could be) analysed 
to answer research questions in more nuanced ways as 
part of a variety of disciplines including environmental 
health, epidemiology, genetics, social and behavioural 
sciences, and infectious diseases. GeoAI has been used 
to model and capture the environment around us, link-
ing locations in which we live, work, and spend our time 
to these exposures (whether it be environmental, social, 
etc.) to explore their potential role in influencing health 
outcomes. GeoAI has also led to research for hypothesis 
generation, conducting new data linkages, and predict-
ing disease occurrence. There are currently numerous 
population-level GeoAI applications for public health 
and IoT-powered smart healthy cities, and there are 
emerging opportunities for integration of GeoAI and 
location-based information into precision medicine such 
as via mHealth for interventions. Future research can 
expand on current GeoAI applications, such as modelling 
location-based features that have not been previously 
captured at a high spatiotemporal resolution, or analyt-
ics for newly emerging spatial big data source, to unlock 
new areas of research and advance our understanding of 
human health.
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