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Abstract 

Background: Designing healthy, liveable cities is a global priority. Current liveability indices are aggregated at the 
city‑level, do not reflect spatial variation within cities, and are often not aligned to policy or health.

Objectives: To combine policy‑relevant liveability indicators associated with health into a spatial Urban Liveability 
Index (ULI) and examine its association with adult travel behaviours.

Methods: We developed methods to calculate spatial liveability indicators and the ULI for all residential addresses 
in Melbourne, Australia. Associations between the address‑level ULI and adult travel behaviours from the 2012–2014 
Victorian Integrated Survey of Travel and Activity (VISTA) (n = 12,323) were analysed using multilevel logistic regres‑
sion. Sensitivity analyses to evaluate impact of methodological choices on distribution of liveability as assessed by the 
ULI and associations with travel mode choice were also conducted.

Results: Liveability estimates were calculated for 1,550,641 residential addresses. ULI scores were positively associ‑
ated with active transport behaviour: for each unit increase in the ULI score the estimated adjusted odds ratio (OR) 
for: walking increased by 12% (95% Credible Interval: 9%, 15%); cycling increased by 10% (4%, 17%); public transport 
increased by 15% (11%, 19%); and private vehicle transport decreased by 12% (− 9%, − 15%).

Conclusions: The ULI provides an evidence‑informed and policy‑relevant measure of urban liveability, that is sig‑
nificantly and approximately linearly associated with adult travel behaviours in the Melbourne context. The ULI can 
be used to evaluate progress towards implementing policies designed to achieve more liveable cities, identify spatial 
inequities, and examine relationships with health and wellbeing.
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
City planning originated as a means of protecting the 
public’s health in crowded and polluted industrialising 
cities; however, the links between planning and health 
have attenuated over the last century [1]. More recently, 
creating ‘liveable cities’ is a growing policy aspiration 
across multiple levels of government globally [2]. This 
is largely in response to population projections, rapid 

urbanisation, and climate change, whereby designing 
liveable cities that promote health and wellbeing is now 
a global priority, as realised, for example, through the UN 
Sustainable Development Goals [3]. In Australia, exam-
ples include the Federal Government’s National Cities 
Performance Framework [4], the state of Victoria’s Plan 
Melbourne [5], and Cardinia Shire’s Liveability Plan [6].

Despite increasing use of the concept of ‘liveability’ and 
its intuitive meaning, it is rarely explicitly defined. Fol-
lowing a literature review, we developed a comprehensive 
definition of urban liveability [7] as being communities 
that are “safe, attractive, socially cohesive and inclusive, 
and environmentally sustainable; with affordable and 
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diverse housing linked by convenient public transport, 
walking and cycling infrastructure to employment, edu-
cation, public open space, local shops, health and com-
munity services, and leisure and cultural opportunities”. 
This definition reflects the social determinants of health 
and wellbeing [8] and implies the need for integrated 
urban governance across multiple sectors to create a 
healthy liveable city [9]. To evaluate and inform urban 
policy, we identified a need for policy-relevant liveability 
indicators that are: aligned with urban planning policies; 
measured at appropriate geographic scales to minimise 
ecological bias; and, linked with population health data-
sets to examine associations with health and wellbeing 
outcomes [7, 10]. In this way, the concept of urban live-
ability could be used to inform and evaluate urban plan-
ning policies that create health promoting cities [9].

To create appropriate liveability indicators, we 
embarked on a research program that conceptualized 
and tested hypothesized pathways through which mul-
tiple domains of liveability influence health and wellbe-
ing outcomes. Where possible these were aligned with 
urban planning policy, and when no policies existed, the 
indicators were developed based on empirical evidence. 
Details of this foundational work are described elsewhere 
[10–21]. Our findings were generally consistent with a 
growing body of international evidence observing posi-
tive associations between various liveability domains and 
the health and wellbeing of adults [22, 23].

Building on this program of research, in this paper 
we consider the combined influence of these underly-
ing domains of urban liveability—transport, social infra-
structure, employment, walkability, housing and green 
infrastructure—to assess how ‘liveable’ cities might 
enhance health and wellbeing and reduce spatial inequi-
ties. Indeed, creating a robust composite tool could help 
identify spatial variability of urban liveability across cities 
and better inform decision-makers of the overall impact 
of integrated city planning policies. It achieves this by (1) 
summarising and visualising aspects of the build environ-
ment based on a transparent and reproducible method 
and (2) enabling research into the association between 
the indicator and health outcomes of interest.

This paper presents the development of the Urban 
Liveability Index (ULI), an evidence-informed, policy-rel-
evant liveability index that incorporates indicators of live-
ability found previously to support health and wellbeing. 
It has been designed to capture the spatial distribution of 
within-city variation so that any inequities in urban live-
ability may be assessed quantitatively and visually.

Our emphasis is on within-city variation in liveability 
to identify inequities in the provision of urban infrastruc-
ture, and hence requires a high resolution approach. To 
illustrate this, we compare resolution-specific estimates 

of association between ULI and travel behaviour in 
adults. We further use this case study to examine the 
influence of other methodological choices through a 
series of sensitivity analyses.

Methods
Calculating liveability for residential lots
Construction of the ULI was informed by a guide for 
composite indicator construction published by the 
Organisation for Economic Co-operation and Devel-
opment  (OECD) [24], which proposed an iterative pro-
cess: theoretical framework development; data collation, 
cleaning and analysis; normalisation; weighting and 
aggregation; evaluation of robustness and sensitivity; 
post-evaluation revision of processes in earlier steps as 
required; analysis with other variables; and visualisation 
and dissemination. In the theoretical framework stage, 
we drew upon our previous conceptual work [25] to 
map the relationship between the underlying liveability 
domains, data sources which were accessible in order to 
measure these in the form of derived indicators, and how 
these indicators may be combined to form a composite 
index.

The final set of spatial liveability indicators chosen 
for inclusion in the ULI reflected a balance of parsi-
mony (reflecting the core aspects of liveability identified 
through our previous work) and pragmatism (i.e., what 
data could be readily accessed for Melbourne, but also 
for other urban and regional locations of interest across 
Australia). We acknowledge these indicators do not 
capture the full complexity of liveability; however, they 
broadly reflect the social determinants of health, which 
are important for health and wellbeing [23]. Our concep-
tual model of indicators as grouped by liveability domain 
is presented in Fig.  1 and methods of calculation are 
described below.

The spatial liveability indicators and the ULI were cal-
culated using processes scripted using Python 2.7.14 [38] 
interfacing with ArcPy/ArcGIS 10.5 software with the 
Network Analyst extension [39] and a PostgreSQL 9.6 
database with the PostGIS 2.3.1 extension [40, 41].

Study region
The ULI was calculated for Melbourne, the capital of 
the Australian state of Victoria. Melbourne’s population 
in 2016 was 4.7 million people [36], representing almost 
20% of the Australian population, and is expected to grow 
to around 8 million by 2050 [37]. We restricted the study 
area to the metropolitan region corresponding to the 
Australian Bureau of Statistics (ABS) statistical division 
for Melbourne in 2011 [32], where this intersected the 
ABS Sections of State geographic classification of ‘Urban’ 
or ‘Other Urban’ [73]. The time point of 2011 aligned 
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with the completion of the five-yearly national census in 
2011, and for which other appropriate spatial data were 
also available. To mitigate edge effects, we used a 10 km 
study region buffer for expanded destination and road 
network coverage. This allowed for residential addresses 
on the study region periphery to have adequate network 
connectivity to proximal destinations that may not be in 
the study region itself.

Sampling locations
Measures of local neighbourhood liveability were cal-
culated for a set of 1,550,641 sample point locations 
across Melbourne. These sampling points were derived 
from the Geocoded National Address File (G-NAF) for 
2012 [42], a regularly updated database of all addresses 
within Australia. Address points in the study region 
(n = 2,259,075) were dissolved by location, such that if 
a series of addresses shared the same coordinates these 
were represented as a single point. We refer to these sam-
pling points as residential lots since they serve as proxy 
locations for lots with residential potential.

To ensure G-NAF address points were representative 
of where people actually live, address points were only 
retained if they were located within a Mesh Block [72] 
with 2011 dwelling count [74] greater than zero; other-
wise, they were excluded. Mesh Blocks are the smallest 
geographical unit used by the ABS [43], with a median 
dwelling count within our metro-urban Melbourne study 
region of 19 (interquartile range, IQR 0–37). Address 
points located in Statistical Area 1 regions (SA1s; com-
prising approximately 200 to 800 persons, akin to a local 
neighbourhood [72]) for which the ABS 2011 Socio-eco-
nomic Indexes for Areas (SEIFA) Index of Relative Socio-
economic Disadvantage (IRSD) [75] was not calculated 
were excluded. This served as an implicit adoption of the 
IRSD exclusion criteria [43], which is not calculated for 
SA1s with: a population of 10 persons or fewer; five or 
fewer employed persons; five or fewer classifiable occu-
pied private dwellings; 20% or lower occupancy of private 
dwellings; no addresses; or located offshore.

In addition to the geographical and topological exclu-
sions, any residential lot with a null record following 
calculation were also excluded. Null records for a local 
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Fig. 1 Liveability domains and indicators as conceptualised in the Urban Liveability Index. A conceptual flow diagram of our process, from the 
concept of liveability (left) considered through key domains, neighbourhood measures which are ultimately combined in the ULI (right). The 
inclusion of an air quality indicator (below dashed line) in the liveability model was evaluated as a sensitivity analysis
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built environment indicator could occur for residential 
lots in locations without proximal access to a walkable 
road network. In total, 48 residential lots across 8 Mesh 
Blocks were excluded due to inability to calculate at least 
one local neighbourhood indicator (destination access, or 
walkability index); 3936 residential lots across 117 Mesh 
Blocks were excluded due to being located in an SA1 for 
which the SEIFA IRSD had not been calculated by the 
ABS.

The final set of 1,550,641 residential lots with valid 
indicators served as sampling locations for the spa-
tial distribution of liveability indicators and in turn the 
ULI; when aggregated these corresponded to 42,154 
Mesh Blocks, 8958 SA1 regions and 31 Local Govern-
ment Areas (LGAs)across metropolitan Melbourne. The 
counts at successive stages of processing are enumerated 
in Table 1.

Calculating spatial indicators of liveability
A cleaned, ‘walkable’ road network that excluded high-
ways and freeways was created [44] based on the 2012 
Vicmap Transport dataset [76]. The local walkable neigh-
bourhood for each residential lot was evaluated as its 
1600  m network extent, with network lines buffered by 
50 m width [45]. Liveability indicators were calculated as 
follows, with further detail on methods used for evalu-
ating destination access provided further below. The 

liveability indicators for residential lots were measured at 
the finest scale possible given available data and destina-
tion data were compiled from various sources dated as 
close as possible to 2011.

Walkability was calculated as the sum of standardised 
scores of local neighbourhood street connectivity, dwell-
ing density and daily living score [14, 26]. Street connec-
tivity was calculated as the ratio of intersections [76] to 
local walkable neighbourhood area in square kilometres. 
Dwelling density was calculated as the total number of 
dwellings located in Mesh Blocks intersecting each par-
ticipants’ local walkable neighbourhood divided by the 
neighbourhood size in hectares. A daily living score rang-
ing from 0 to 3 for access to three kinds of basic amenities 
(a public transport stop, a supermarket, and a conveni-
ence location) was calculated drawing on the method of 
Badland et al. [14].

Social infrastructure mix was calculated as a score for 
local access to 15 different types of destination across 
domains of ‘early years’, ‘education’, ‘community, culture 
and leisure’, ‘health and social services’ and ‘sport and 
recreation’ following the method of Davern et al. [17].

Public transport access was evaluated based on Victo-
rian government planning standards for public transport 
access within mode-specific threshold distances of either 
a: bus stop within 400 m, tram stop within 600 m or train 
station within 800 m [27].

Table 1 Residential lot counts at successive stages of processing, from input to final ULI estimates

Counts for the administrative boundaries residential lots correspond to when aggregated are also presented

Geographic scale Processing stage n

Disaggregated points

Residential lot 2012 G‑NAF (Victoria) 3,238,149

Within metropolitan Melbourne 2,259,075

Within Mesh Blocks with 2011 dwelling count > 0 2,095,669

Duplicate coordinates collapsed to unique location 1,554,624

In SA1 with IRSD 1,550,688

With valid indicators 1,550,641

Aggregate areas

Mesh Block 2011 ABS data (Victoria) 81,377

Within metropolitan Melbourne 52,128

With > 0 dwellings 44,581

Associated with addresses with valid indicators 42,154

Statistical Area 1 (SA1) 2011 ABS data (Victoria) 13,339

Within metropolitan Melbourne 9404

With IRSD 9115

Associated with addresses with valid indicators 8958

Local Government Areas (LGA)

2011 ABS data (Victoria) 81

Within metropolitan Melbourne 33

Associated with addresses with valid indicators 31
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Large public open space (POS) access was based on a 
Victorian policy standard that POS should be available 
within 400 m of a residence [27]. Our measure included 
both proximity and size (larger than 1.5  ha), based on 
previous research indicating these dimensions’ impor-
tance for supporting recreational walking [28–31].To 
capture the accessibility of POS—which often can be 
entered from any point—polygon boundaries [77] were 
converted to point vertices at 50 m intervals [29].

Affordable housing was based on the proportion of 
low income households (in the bottom 40 per cent of 
the Australian income distribution) not experiencing 
housing affordability stress. Housing affordability stress 
was defined as the proportion of low income house-
holds paying more than 30 per cent of their income on 
housing costs [13]. This indicator was calculated at the 
SA1 level, based on a 2011 Census custom data report 
provided by the ABS [78].

Local work opportunities was calculated as the pro-
portion of employed persons who live and work in 
the same Statistical Area 3 (SA3; a regional division of 
approximately 30,000 to 130,000 persons [32]), calcu-
lated at the Statistical Area 2 level (SA2; an average of 
10,000 persons [32], akin to a socially and economically 
coherent local community).

In our previously published conceptual model of the 
influence of urban and transport design and planning 
on health and wellbeing [7, 9], air quality was consid-
ered an outcome of city planning decisions, whereby 
integrated planning influences transport mode and 
emissions. However, given global concerns about the 
adverse health effects of air pollution exposure in cities 
[33, 34] and following feedback from our international 
project advisory group, it was decided to trial inclusion 
of an air quality indicator in the ULI.

Hence, a sensitivity analysis was conducted to exam-
ine the impact including an air quality indicator in the 
ULI. The 2011 Melbourne segment of a national, lon-
gitudinal ambient air pollution dataset derived from a 
satellite-based land-use regression model was acquired 
featuring Mesh Block-level annual average predic-
tion of nitrogen dioxide  (NO2) [79]; the surface model 
was validated to predict 69% of spatial variation in 
annual  NO2 (root mean square error 25%) [80]. Mesh 
Block-level modelled annual average  NO2 serves as  a 
general proxy for traffic-related and other combustion-
derived air pollutants. Australian air quality standards 
prescribe a threshold of 30 parts per billion (ppb) for 
annual average  NO2 concentrations [35]. As higher lev-
els of air pollution are less desirable, the reverse-scaled 
air pollution measure was used as an indicator of air 
quality, to match the polarity of the other indicators.

Evaluating destination access
Distance to destinations along a street network was 
measured using origin–destination (OD) matrices pro-
cessed using ArcGIS Network Analyst [38]. Destination 
accessibility was considered with reference to destina-
tion specific threshold distances within which access 
should be achieved [17], summarised in Table 2.

Thresholds readily lead to the creation of binary (‘no’ 
or ‘yes’) indicators of destination access; an intuitive 
way to express whether a policy has or has not been 
achieved, which when aggregated is interpreted as the 
proportion of residential lots within that area that have 
access within the policy-recommended distance. How-
ever, the imposition of a hard threshold (for example, 
access to a bus stop within 400 m) is an arbitrary choice 
that results in loss of information that can otherwise be 
used for statistical inference [46]. When a hard thresh-
old is applied, living within 390  m of a bus stop gives 
a person full benefit, yet a resident living at 410  m 
receives zero benefit, despite the modest difference 
in distance. Further, while acknowledging that reality 
may be more complex, our model assumes that greater 
proximity is preferable.

An approach that recognises the value of greater 
proximity was considered important for capturing the 
nuances of liveability. We developed a ‘soft threshold’ 
approach to evaluating destination access using a logis-
tic decay function, which yields a continuous access score 
for each destination type ranging from 0 to 1, as an alter-
native to binary hard thresholds:

where dq is the pedestrian network distance to nearest 
destination q , cq is the destination-specific threshold dis-
tance and k adjusts the slope of decay, which was set as 
k = 5 . Figure 2 illustrates calculation of access scores for 
a bus stop using hard and soft thresholds, with a policy-
relevant threshold of 400  m. An illustrative overlay of 
two scenarios at 390 m and 410 m shows how the access 
scores for distance to closest bus stop from a residential 
lot are similar when using the soft threshold (respectively, 
0.53 and 0.47), but at polar extremes when using the hard 
threshold (0 and 1).

The area level averages of the hard- and soft-threshold 
estimates would be expected to be more or less simi-
lar, however they differ with regard to interpretation: 
the hard-threshold average of an area is the proportion 
of lots with access to a destination within the threshold 
distance; the soft-threshold average may be more appro-
priately considered a score of ‘effective access’ to a desti-
nation for that area, given the recommended threshold.

Soft threshold access score =
1

1+ exp
(

k
dq−cq
cq

)
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The liveability indicators used in the ULI were calcu-
lated using soft-thresholds for destination access where 
applicable. Alternate versions of the liveability indicators 
and the ULI were calculated using hard thresholds and 
evaluated as a sensitivity analysis.

Urban Liveability Index creation
The formulae presented below conceptualise the pre-
calculated indicator data used to construct the ULI as a 
matrix X with n rows of unique residential address points 
indexed as i , and 7 columns of indicators indexed as j . 
The value of indicator j at address i is xij , while the set of 
values across all addresses for indicator j is xj  (in bold). 
The mean and population standard deviation for indi-
cator j are written respectively as x̄j and sxj (as defined 
below). The average of all indicators at address i is 
referred to as x̄i . Subsequent formulae will expand upon 
these concepts.

Table 2 ULI indicator destinations with access cut-off distances and access summary for Melbourne residential lots

Measure Destination Cut-off distance (m) Median [IQR] distance (m)

Daily living (/3) Public transport stop [76] (at least one)

 Bus stop 400 318 [180,513]

 Tram stop 600 8342 [2294,19833]

 Train station 800 2217 [1232,3973]

Food (supermarket [81]) 1000 1181 [759,1715]

Convenience [81] (at least one)

 Convenience store 1000 812 [485,1319]

 Petrol station 1000 1098 [689,1702]

 Newsagent 1000 1330 [794,2251]

Social infrastructure mix (/15) Community, culture and leisure [82]

 Community centre 1000 2082 [1242,3268]

 Library 1000 2232 [1387,3524]

 Museum/art gallery 3200 4649 [2645,7651]

 Cinema/theatre 3200 3471 [2064,7544]

Early years [83]

 Childcare 800 659 [420,971]

 Childcare (outside school hours) 1600 984 [647,1449]

Education [82]

 State secondary school 1600 1857 [1219,2709]

 State primary school 1600 1036 [698,1470]

Health and social services [82]

 Aged care 1000 1065 [623,1795]

 Community health centre 1000 1715 [1037,2843]

 Dentist 1000 915 [526,1553]

 GP clinic 1000 901 [546,1412]

 Maternal/child health centre 1000 2045 [1242,3368]

 Pharmacy 1000 892 [548,1414]

Sport [82]

 Sport 1200 868 [572,1289]

 Swimming pool 1200 2963 [1919,4322]

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800 1000

Distance (m)

Hard
Soft

Cut-off

Access score

Fig. 2 Illustrative comparison of the hard and soft thresholds for 
access to a bus stop within 400 m of a residential address
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The ULI was constructed based on the Mazziota–Pareto 
Index (MPI) method, an approach designed for use in con-
texts of either development or deprivation [48]. In these 
contexts, as with that of urban liveability, indicators relate 
to discrete domains and are considered non-compensable: 
that is, scoring high on one or two within a suite of indica-
tors should not wholly compensate for poor performance 
on the rest (and vice versa). The MPI method involves 
standardisation of indicators such that they have a usual 
range of ±3 standard deviations around a mean; varia-
tion across the set of indicators to be combined is penal-
ised, providing a tacit incentive for balanced performance. 

This conditionally applied transformation is analogous 
to signal processing used to boost low amplitude signals 
and compress those that are too ‘loud’ towards a narrower 
range [47] facilitating balance of the overall ensemble of 
indicators in the ULI.

The conditionally scaled residential address estimates 
for each indicator ( x′

ij ) were normalised as part of the MPI 
construction process using the following formula [48]:

Each zij represents the conditionally scaled and normal-
ised score z for residential address i with regard to the indi-
cator j . This results in column-wise per-indicator means of 
100 and standard deviation 10 . An expected usual range of 
from 70 to 130 was enforced through our approach to out-
lier management.

The composite indicator for each residential address 
( ULIi) was calculated as the row-wise average of all indi-
cators for that address z̄i minus a penalty, which rewarded 
a balanced set of indicators. This penalty is defined as 
the variability of sub-indicators at the residential address 
(

s2zi

)

 relative to the average of all indicators at the specific 
address (z̄i).

x̄j =
1

N

N
∑

i=1

xij

sxj =

√

√

√

√

1

N

n
∑

i=1

(

xij − x̄j
)2

Lj = x̄j − 2sxj

Uj = x̄j + 2sxj

x′ij =















Lj + sxj
xij−min(xj)
Lj−min(xj)

, if (min
�

xj
�

< Lj − sxj ) ∪ (xij < Lj)

Uj + sxj
xij−Uj

max(xj)−Uj
, if (max

�

xj
�

> Uj + sxj ) ∪ (xij > Uj)

xij , otherwise

zij =















100+ 10
x′ij−x̄′j
sx′j

, if polarity is positive

100− 10
x′ij−x̄′j
s
x
′

j

, if polarity is negative

z̄i =
1

Nj

N
∑

j=1

zij

szi =

√

√

√

√

∑n
j=1

(

zij − z̄i
)2

Nj

Fig. 3 Example of compression algorithm for scaling outliers to 
within 3 standard deviations of the indicator mean

Indicators were conditionally scaled prior to ULI construc-
tion to constrain the influence of extreme outliers. This 
was done to limit the impact of an excessive penalty arising 
from an isolated extreme indicator result in an otherwise 
balanced and well performing set; we considered it appro-
priate for some penalty to be applied, but since the penalty 
is non-linear it was considered desirable to enforce scal-
ing to the stable usual range described in the examples of 
Mazziota and Pareto [48]. We developed and applied an 
algorithm which scaled address values for any indicator xj 
which had a value xij more than three standard deviations 
sxj from the indicator mean x̄j . to lie within this range by 
applying a linear transformation in such cases only to those 
values more than two standard deviations distance from 
the mean (Fig. 3):
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Testing associations between the ULI and travel mode 
choice
We investigated the association between the ULI and travel 
mode choice for trips within a person’s residential neigh-
bourhood using the Victorian Integrated Survey of Travel 
Activity 2012–14 (VISTA12). VISTA12 provides a geo-
graphically representative survey of travel behaviour for the 
Victorian population. Survey data were obtained from the 
Victorian Department of Transport, Planning and Local 
Infrastructure (project ethics approval number CHEAN A 
20582-03/17). Participants in VISTA12 recorded all trips, 
stops, and the modes used on one survey day, and pro-
vided socio-demographic information. VISTA12’s sampling 
consisted of randomly selected Mesh Blocks and multiple 
households sampled within each Mesh Block. All house-
hold members were asked to participate. The VISTA12 data 
set contained 22,934 unique people within Melbourne who 
recorded 73,889 trips. Each VISTA12 geocoded household 
address point was associated with a ULI score based on 
linkage with the closest residential address.

Defining eligible trips
Participants aged 18 years and older who travelled on the 
survey day, had eligible trips starting or ending within 
their residential neighbourhood (< 1600  m of home 
address), and who had complete data for all covariates 
were included in the final sample. Eligible trips were 
defined as non-recreational trips (i.e. those that did not 
both start and end in ‘‘parks’’, ‘‘forests’ or ‘lakes’). Fol-
lowing the approach of Badland et  al. [14], for all eligi-
ble trips the primary mode of travel was categorised as 
‘walking’, ‘cycling’, ‘driving’ or ‘public transport’, and, for 
each participant four binary indicators were derived, rep-
resenting at least one eligible trip of each travel mode.

Covariates
Socio-demographic variables included age group, sex, 
household income, household type, vehicle ownership, 
and employment status. Household income was trans-
formed into equivalised income using the modified-
OECD scale, adjusting for the number of adults and 
children living in the household [49]. Univariable associ-
ations between covariates and ULI quintiles were evalu-
ated using linear models with application of a square root 
transformation in case of skewed distribution, or Chi 
squared tests for categorical variables.

Statistical modelling
VISTA12’s nested sampling frame of people within 
households, within Mesh Blocks necessitated a multilevel 

ULIi = z̄i −
s2zi
z̄i

model. Separate multilevel logistic models were fitted 
for each of the outcome variables: walking, cycling, tak-
ing public transport and driving at least once on the day 
of the survey. All models were adjusted for socio-demo-
graphic variables, and an indicator variable was used for 
the day of the week. Age was grouped into 18–29, 30–49, 
50–64, and ≥ 65  years. Statistical analyses were under-
taken using R version 3.5.1 [50], and package ‘rstanarm’ 
version 2.17.4 [51]. The formula used for all analyses was 
of the form:

formula <- binary_outcome ~ meas-
ure_of_interest + agegroup + sex + 
factor(day_of_week) + has_any_work + 
household_type + vehicle + oecd_income_
quintile + (1|meshblock/household)

where binary outcome refers to one of four separately 
analysed travel modes, and measure of interest relates to 
the ULI or its separately analysed constituent indicators. 
Covariates were included as fixed effects, with household 
nested within Mesh Blocks as random effects.

Multilevel logistic regression models using this formula 
were implemented with default, weakly informative pri-
ors using the following code:

model < - stan_glmer(formula, family =  
binomial, data = db, chains = 6)

Sensitivity analysis
Sensitivity analyses were conducted to evaluate the 
impact on spatial distribution of liveability and any 
change in estimates of association with travel mode 
choice related to methodological aspects, being the: (1) 
inclusion of an air quality indicator (reverse-scaled  NO2 
air pollution) in the ULI; and (2) use of aggregate areas 
instead of residential lots.

The ULI was calculated for individual locations rather 
than areas in the first instance, allowing for evaluation of 
the spatial distribution of liveability and consideration of 
questions of equity. To evaluate the impact of aggrega-
tion, the ULI and its constituent indicators (including air 
quality) were aggregated to Mesh Block, SA1, Suburb and 
Local Government Area (LGA) levels using residential lot 
averages.

We also examined the change in distribution of live-
ability indicators and the ULI when using hard—instead 
of soft thresholds for destination access.

Results
Liveability distribution for residential lots
Table  2 summarises the median and interquartile range 
of distance in metres for residential lot access to desti-
nations. Distribution summaries for the residential lot 
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estimates of spatial liveability indicators are presented in 
Table 3 for the three key stages of data processing lead-
ing to ULI construction: (1) raw data; (2) following condi-
tional scaling of outliers to no more than three standard 
deviations of the indicator mean; and (3) following nor-
malisation to a common scale. The spatial distribution 
of the ULI in Melbourne for 2011 is presented in Fig. 4; 
Additional file  1 provides an animated sequence allow-
ing for comparison of choropleth maps of the spatial 

distribution of quartiles of the ULI with- and without air 
quality included, and the raw forms of each of its constit-
uent indicators, with aggregation at the SA1 small area 
scale.

Associations between the ULI and travel mode choice
After excluding VISTA12 participants outside of the 
study area and trips that did not either start or end in 
their residential neighbourhood, 50,128 eligible trips 

Table 3 Summary of liveability indicator and ULI (in italics) distribution for residential lots

Constituent sub-indicators contributing to walkability score are included for reference purposes

* Sensitivity analysis

Indicatorestimates

Mean ± SD 25th p. Median 75thp. Min. Max.

Raw indicators

Walkability 0.0 ± 2.4 − 1.3 − 0.1 0.9 − 7.7 13.6

 Daily Living (/3) 1.7 ± 0.8 1.1 1.8 2.4 0.0 3.0

 Dwellings per Ha 14.1 ± 5.8 11.1 13.3 15.7 0.0 52.1

 3 + way street connections per  km2 70.2 ± 20.5 60.3 67.4 76.2 2.0 201.2

Social infrastructure mix (/16) 6.8 ± 3.1 4.4 6.9 9.1 0.0 15.3

Public transport access meets policy (%) 64.5 ± 36.1 32.2 81.9 95.5 0.0 99.3

Large park access (%) 48.2 ± 39.9 4.1 47.2 91.9 0.0 99.3

Air pollution 8.9 ± 2.6 7.1 8.7 10.3 3.6 34.9

Affordable housing (SA1 %) 11.4 ± 8.9 5.4 10.5 16.2 0.0 100.0

Local work opportunities (SA2 %) 26.6 ± 11.2 19.4 24.4 29.7 10.0 68.7

Conditionally scaled indicators

Walkability − 0.1 ± 2.1 − 1.3 − 0.1 0.9 − 7.2 7.3

 Daily Living (/3) 1.7 ± 0.8 1.1 1.8 2.4 0.0 3.0

 Dwellings per Ha 13.9 ± 4.9 11.1 13.3 15.7 0.0 31.4

 3 + way street connections per  km2 69.2 ± 17.0 60.3 67.4 76.2 8.7 131.6

Social infrastructure mix (/16) 6.8 ± 3.1 4.4 6.9 9.1 0.0 15.3

Public transport access meets policy (%) 64.5 ± 36.1 32.2 81.9 95.5 0.0 99.3

Large park access (%) 48.2 ± 39.9 4.1 47.2 91.9 0.0 99.3

Air pollution 8.8 ± 2.3 7.1 8.7 10.3 3.6 16.6

Affordable housing (SA1 %) 11.1 ± 8.2 5.4 10.5 16.2 0.0 38.2

Local work opportunities (SA2 %) 26.2 ± 10.2 19.4 24.4 29.7 10.0 60.1

Normalised, conditionally scaled indicators, with 
composite index

ULI 99.2.  ± .5.0 96.1 99.5 102.6 82.1 119.7

ULI including air quality* 99.2  ± 3.9 96.7 99.3 101.7 83.8 113.5

 Walkability 100.0 ± 10.0 94.3 99.7 104.7 66.5 134.3

  Daily living (/3) 100.0 ± 10.0 92.5 101.5 108.5 79.7 115.0

  Dwellings per Ha 100.0 ± 10.0 94.4 98.9 103.8 71.7 135.9

  3 + way street connections per  km2 100.0 ± 10.0 94.8 99.0 104.1 64.3 136.8

Social infrastructure mix (/16) 100.0 ± 10.0 92.5 100.5 107.4 78.4 127.2

Public transport access meets policy (%) 100.0 ± 10.0 91.1 104.8 108.6 82.1 109.7

Large park access (%) 100.0 ± 10.0 89.0 99.7 110.9 87.9 112.8

Air quality 100.0 ± 10.0 93.5 100.5 107.4 66.2 122.7

Affordable housing (SA1 %) 100.0 ± 10.0 93.0 99.3 106.3 86.4 133.2

Local work opportunities (SA2 %) 100.0 ± 10.0 93.3 98.2 103.4 84.1 133.2
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were retained. Of these, 111 had missing data on mode 
choice; no trips were identified as recreational. Using 
the remaining 50,017 eligible trips, we identified 15,917 
unique persons with at least one eligible trip, of whom 
12,557 were aged ≥ 18  years. A total of 12,323 adult 
participants with complete data for all covariates were 
included in the final sample. The average age of included 
participants was 46.6 ± 16.4 years. There was a balanced 
sex distribution (6318 females, 51%), and 71% of respond-
ents reported being employed (n = 8748). The distribu-
tion of included participant covariates is summarised by 
ULI quintile in Table 4.

Demographic differences relating to ULI quintile mem-
bership were observed. Most participants reported hav-
ing access to a vehicle (96.7%); however, no vehicle access 
was more common for participants in higher ULI quin-
tiles (p < 0.001). Participants in lower ULI quintiles were 
on average less likely to live in a single person house-
hold and more likely to have children (p < 0.001). A non-
linear relationship was observed between liveability and 
income: those in the lowest and highest income brackets 

were similarly likely to live in a location of highest ULI, 
and more so than those in the middle-income bracket; 
those in the middle-income bracket were more likely to 
live in a low ULI quintile location compared with those in 
the highest and lowest income brackets.

There was a positive linear (unadjusted) association 
between the number of participants reporting taking 
at least one walking trip and ULI quintile member-
ship (p < 0.001). Similar patterns were observed for use 
of public transport and for cycling. Conversely, those 
residing in more liveable areas had a reduced likelihood 
of travelling by private vehicle (p < 0.001).

This pattern was confirmed by the adjusted multilevel 
analysis as shown in Table 5 for walking for transport; 
columns represent estimates obtained using a progres-
sively larger spatial aggregation of data for the indica-
tors; and all indicators were included separately in each 
model. Full results including covariates for the hier-
archical model predicting trips usage each transport 
mode with regard to the ULI are presented in Addi-
tional file 2.

Fig. 4 Spatial distribution of the ULI. The spatial distribution of percentiles of ULI for residential lots across Melbourne. The study region (main map), 
was restricted to the urban portion of the Melbourne statistical division in the state of Victoria, Australia (inset)
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The ULI was positively associated with walking, with 
an adjusted odds ratio (AOR) of 1.13(95% Credible Inter-
val 1.12,1.15); that is, for each unit increase in the ULI 
score, the odds of walking for transport was estimated to 
increase by 13% (95% CrI 12% to 15%).

When modelled separately, three of the sub-domains 
of urban liveability were also significantly and positively 
associated with walking for transport: walkability AOR 
1.07 (95% CrI 1.07, 1.08), social infrastructure AOR 1.08 

(95% CrI 1.07, 1.09), and public transport AOR 1.05 (95% 
CrI 1.04, 1.06).

Conversely, the ULI and three of its sub-domains were 
significantly and negatively associated with travelling by 
private vehicle: ULI AOR 0.85 (95% CrI 0.83, 0.87), walk-
ability AOR 0.91 (95% CrI 0.90, 0.92), social infrastruc-
ture AOR 0.90 (95% CrI 0.89, 0.91), and public transport 
AOR 0.94 (95% CrI 0.92, 0.95). These results demon-
strate neighbourhoods that are designed to encourage 

Table 4 Summaries of covariates and outcomes of retained VISTA12 participants by liveability score quintile

Tests: aLinear model (trend); bChi squared; cGeneralised linear model (trend); dLinear model (square root transformed; trend); eSurvey day of administration was 
included as separate days in statistical models, but for conciseness summarised here as week or weekend day

ULI quintiles p value

84.6, 95.0 95.0, 98.4 98.4, 100.8 100.8, 103.4 103.4, 117.7

N 2465 2464 2465 2464 2465

Age

Continuous—median [IQR] 46 [24.0] 48 [25.0] 46 [25.0] 46 [26.0] 43 [25.0] 0.029a

 Group—n (%)

  18–29 434 (17.6) 407 (16.5) 429 (17.4) 436 (17.7) 469 (19.0) < 0.001b

  30–49 981 (39.8) 916 (37.2) 1012 (41.1) 966 (39.2) 1012 (41.1)

  50–64 721 (29.2) 727 (29.5) 649 (26.3) 627 (25.4) 641 (26.0)

  65 and over 329 (13.3) 414 (16.8) 375 (15.2) 435 (17.7) 343 (13.9)

Sex

Male 1211 (49.1) 1207 (49.0) 1202 (48.8) 1192 (48.4) 1193 (48.4) 0.516c

Female 1254 (50.9) 1257 (51.0) 1263 (51.2) 1272 (51.6) 1272 (51.6)

Household structure

Lone person 143 (5.8) 239 (9.7) 259 (10.5) 306 (12.4) 436 (17.7) < 0.001b

With children 824 (33.4) 785 (31.9) 753 (30.5) 631 (25.6) 605 (24.5)

Without children 1498 (60.8) 1440 (58.4) 1453 (58.9) 1527 (62.0) 1424 (57.8)

Employed—n (%)

Yes 1825 (74.0) 1745 (70.8) 1729 (70.1) 1712 (69.5) 1737 (70.5) 0.003c

Vehicle access—n (%)

No 24 (1.0) 42 (1.7) 80 (3.2) 90 (3.7) 181 (7.3) < 0.001c

Survey administration day of weeke—n (%)

Weekday 1922 (78.0) 1868 (75.8) 1834 (74.4) 1883 (76.4) 1878 (76.2) 0.003b

Weekend 543 (22.0) 596 (24.2) 631 (25.6) 581 (23.6) 587 (23.8)

Equivalised household income (pre‑tax weekly $AUD)

Continuous—median [IQR] 972.2 [775.0] 945 [847.9] 933.3 [833.3] 958.3 [916.7] 1022 [1104.0] 0.098d

 Quintiles—n (%)

  < 500 448 (18.2) 525 (21.3) 548 (22.2) 552 (22.4) 547 (22.2) < 0.001b

  500–810 486 (19.7) 464 (18.8) 514 (20.9) 440 (17.9) 413 (16.8)

  812–1125 561 (22.8) 497 (20.2) 491 (19.9) 483 (19.6) 426 (17.3)

  1129–1633 536 (21.7) 522 (21.2) 480 (19.5) 501 (20.3) 463 (18.8)

  > 1635 434 (17.6) 456 (18.5) 432 (17.5) 488 (19.8) 616 (25.0)

At least one transport trip reported, by mode of transport—n (%)

Walking 390 (15.8) 528 (21.4) 655 (26.6) 717 (29.1) 1068 (43.3) < 0.001c

Cycling 38 (1.5) 36 (1.5) 51 (2.1) 82 (3.3) 136 (5.5) < 0.001c

Public transport 64 (2.6) 144 (5.8) 238 (9.7) 282 (11.4) 459 (18.6) < 0.001c

Private vehicle 2331 (94.6) 2253 (91.4) 2143 (86.9) 2085 (84.6) 1850 (75.1) < 0.001c
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walkability and active lifestyles are associated with 
increased uptake of active modes of transport including 
public transport, and decreased motor vehicle reliance.

We estimated the probability of taking a  trip for the 
median person by each of the four modes considered 
(Fig. 5). As personal circumstances and preferences have 

Table 5 Covariate-adjusted estimates for change in odds ratio of taking a transport trip per unit increase in  liveability 
(ULI) and sub-domains indicators (italics), with 95% Credible Intervals (CrI)

Results are for separate models for each outcome-exposure of interest-scale combination, with adjustment for age, gender, household type and income, car 
ownership, employment and day of the week. Indicators based on larger aggregate data sources were identical at smaller aggregations or address points and so are 
omitted (–) in these cases

* Sensitivity analysis

Residential address ÂOR 
(95% CrI)

Mesh Block ÂOR (95% CrI) SA1 ÂOR (95% CrI)

Walking

 ULI 1.13 (1.12, 1.15) 1.14 (1.12, 1.16) 1.15 (1.13, 1.17)

 ULI including air quality* 1.12 (1.09, 1.15) 1.13 (1.10, 1.16) 1.14 (1.11, 1.17)

 Walkability 1.07 (1.07, 1.08) 1.07 (1.07, 1.08) 1.08 (1.07, 1.08)

 Social Infrastructure 1.08 (1.07, 1.09) 1.08 (1.07, 1.09) 1.08 (1.07, 1.09)

 Public transport access meets policy (%) 1.05 (1.04, 1.06) 1.06 (1.05, 1.07) 1.08 (1.07, 1.09)

 Large park access (%) 1.00 (0.99, 1.01) 0.99 (0.98, 1.00) 1.00 (0.98, 1.01)

 Air quality – 0.94 (0.93, 0.94) 0.93 (0.93, 0.94)

 Affordable housing – – 1.01 (1.00, 1.02)

 Local work opportunities – – 1.00 (0.99, 1.01)

Public transport

 ULI 1.18 (1.15, 1.22) 1.19 (1.16, 1.22) 1.20 (1.16, 1.23)

 ULI including air quality* 1.15 (1.11, 1.19) 1.15 (1.11, 1.20) 1.16 (1.11, 1.21)

 Walkability 1.10 (1.10, 1.11) 1.10 (1.09, 1.11) 1.10 (1.09, 1.11)

 Social Infrastructure 1.11 (1.10, 1.13) 1.11 (1.10, 1.13) 1.12 (1.10, 1.13)

 Public transport access meets  policy (%) 1.09 (1.07, 1.11) 1.11 (1.09, 1.13) 1.14 (1.12, 1.16)

 Large park access (%) 0.99 (0.98, 1.00) 0.98 (0.97, 1.00) 0.99 (0.97, 1.00)

 Air quality – 0.90 (0.89, 0.91) 0.90 (0.89, 0.91)

 Affordable housing – – 1.01 (1.00, 1.02)

 Local work opportunities – – 0.97 (0.96, 0.98)

Cycling

 ULI 1.15 (1.11, 1.20) 1.16 (1.11, 1.22) 1.18 (1.13, 1.24)

 ULI including air quality* 1.10 (1.04, 1.17) 1.11 (1.04, 1.18) 1.13 (1.06, 1.21)

 Walkability 1.10 (1.08, 1.12) 1.10 (1.08, 1.12) 1.10 (1.08, 1.12)

 Social Infrastructure 1.10 (1.08, 1.13) 1.10 (1.08, 1.13) 1.11 (1.08, 1.14)

 Public transport access meets  policy (%) 1.06 (1.03, 1.08) 1.08 (1.05, 1.11) 1.11 (1.08, 1.15)

 Large park access (%) 1.00 (0.98, 1.02) 0.99 (0.97, 1.02) 1.00 (0.97, 1.02)

 Air quality – 0.91 (0.88, 0.92) 0.90 (0.88, 0.92)

 Affordable housing – – 1.01 (0.98, 1.03)

 Local work opportunities – – 0.97 (0.95, 0.99)

Driving

 ULI 0.85 (0.83, 0.87) 0.84 (0.82, 0.86) 0.84 (0.81, 0.86)

 ULI including air quality* 0.88 (0.85, 0.91) 0.87 (0.84, 0.90) 0.86 (0.83, 0.89)

 Walkability 0.91 (0.90, 0.92) 0.91 (0.90, 0.92) 0.91 (0.89, 0.91)

 Social Infrastructure 0.90 (0.89, 0.91) 0.90 (0.90, 0.91) 0.90 (0.89, 0.91)

 Public transport access meets  policy (%) 0.94 (0.92, 0.95) 0.92 (0.90, 0.93) 0.90 (0.88, 0.91)

 Large park access (%) 1.02 (1.01, 1.03) 1.03 (1.01, 1.04) 1.03 (1.01, 1.04)

 Air quality – 1.10 (1.09, 1.11) 1.10 (1.09, 1.11)

 Affordable housing – – 0.99 (0.98, 1.00)

 Local work opportunities – – 1.02 (1.00, 1.03)
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a substantial role, we also plotted the influence of ULI on 
a ‘low’ and ‘high’ physically active person (corresponding 
to the 25th and 75th percentile of the posterior predictive 
distribution).The positive association between liveability 
and probability of walking for transport, in particular, 
was visibly appreciable. However significant variability 
between people yielded a wide distribution of posterior 
probability. This variation was influenced by covariates 
with effects of varying magnitude, and considerable vari-
ability between households.

The population-averaged probability of walking can 
be interpreted as the percentage of people that will walk 
for transport, and was notably higher than the probabil-
ity of the median person. This demonstrates that, whilst 
our model predicts that living in more liveable areas is 
associated with increased probability of taking a walking 
trip, the magnitude of this increased probability depends 
upon individuals’  (measured) demographic factors and 
(unmeasured) personal preferences.
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Fig. 5 Posterior predicted probability of travel mode by liveability, adjusted for socio‑demographic and area level effects. The dashed line 
represents the population‑averaged probability; the solid line represents the median posterior predicted probability; shaded areas respectively 
represent the predicted probabilities for 50% (darker region), and 95% of the participants (lighter region)
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Sensitivity analysis
Air quality
We refitted the hierarchical logistic regression models to 
an alternative version of the ULI with the addition of the 
air quality indicator (that is, reverse scaled  NO2 air pollu-
tion predicted at the Mesh Block level for 2011). VISTA 
participant demographic characteristics summarised by 
liveability quintile when calculated with the inclusion of 
air quality are presented in Table 6.

The model including air quality has a lower expected 
log predictive density estimate (− 6306.8 vs. − 6277.8), 
suggestive of a worse fit to the data than the model with 
air quality excluded. Further, the effect size estimates for 
association between the ULI and travel mode choice were 
attenuated, and credible interval bounds were broad-
ened for each mode choice (Table 5). This result is con-
sistent with the negative association between air quality 
and walking for transport (AOR 0.94, 95% CrI 0.93, 0.94), 

Table 6 Summaries of  covariates and  outcomes of  retained VISTA12 participants by  hard threshold liveability score 
quintile (including air quality)

Tests: alm(trend); bChi-squared; cglm (trend); dlm(sqrt) (trend); esurvey day of administration was included as separate days in statistical models, but for conciseness 
summarised here as week or weekend day

ULI quintiles, including air quality p value

87.3, 96.0 96.0, 98.3 98.3, 100.1 100.1, 102.2 102.2, 110.6

N 2465 2464 2465 2465 2464

Age

Continuous—median [IQR] 47 [24.0] 46 [24.0] 46 [25.0] 45 [25.0] 46 [26.0] 0.972a

 Group—n (%) < 0.010b

 18–29 431 (17.5) 429 (17.4) 447 (18.1) 434 (17.6) 434 (17.6)

 30–49 935 (37.9) 1011 (41.0) 987 (40.0) 1016 (41.2) 938 (38.1)

 50–64 745 (30.2) 663 (26.9) 652 (26.5) 613 (24.9) 692 (28.1)

 65 and over 354 (14.4) 361 (14.7) 379 (15.4) 402 (16.3) 400 (16.2)

Sex 0.528c

Male 1199 (48.6) 1227 (49.8) 1190 (48.3) 1203 (48.8) 1186 (48.1)

Female 1266 (51.4) 1237 (50.2) 1275 (51.7) 1262 (51.2) 1278 (51.9)

Household structure < 0.001b

Lone person 176 (7.1) 225 (9.1) 296 (12.0) 294 (11.9) 392 (15.9)

With children 774 (31.4) 840 (34.1) 679 (27.5) 695 (28.2) 610 (24.8)

Without children 1515 (61.5) 1399 (56.8) 1490 (60.4) 1476 (59.9) 1462 (59.3)

Employed—n (%) < 0.001c

Yes 1810 (73.4) 1788 (72.6) 1745 (70.8) 1738 (70.5) 1667 (67.7)

Vehicle access—n (%) < 0.001c

No 23 (0.9) 64 (2.6) 105 (4.3) 86 (3.5) 139 (5.6)

Survey administration day of weeke—n (%) < 0.004b

Weekday 1922 (78.0) 1880 (76.3) 1847 (74.9) 1836 (74.5) 1900 (77.1)

Weekend 543 (22.0) 584 (23.7) 618 (25.1) 629 (25.5) 564 (22.9)

Equivalised household income (pre‑tax weekly $AUD)

Continuous—median [IQR] 972.2 [803.6] 985.7 [878.1] 980 [905.6] 964.3 [906.2] 933.3 [940.0] < 0.008d

 Quintiles—n (%) < 0.001b

  < 500 438 (17.8) 482 (19.6) 569 (23.1) 532 (21.6) 599 (24.3)

  500–810 480 (19.5) 476 (19.3) 452 (18.3) 465 (18.9) 444 (18.0)

  812–1125 586 (23.8) 487 (19.8) 428 (17.4) 510 (20.7) 447 (18.1)

  1129–1633 521 (21.1) 539 (21.9) 532 (21.6) 437 (17.7) 473 (19.2)

  > 1635 440 (17.9) 480 (19.5) 484 (19.6) 521 (21.1) 501 (20.3)

At least one transport trip reported, by mode of transport—n (%)

Walking 416 (16.9) 603 (24.5) 699 (28.4) 757 (30.7) 883 (35.8) < 0.001c

Cycling 43 (1.7) 57 (2.3) 72 (2.9) 80 (3.2) 91 (3.7) < 0.001c

Public transport 78 (3.2) 213 (8.6) 267 (10.8) 313 (12.7) 316 (12.8) < 0.001c

Driving 2304 (93.5) 2197 (89.2) 2074 (84.1) 2082 (84.5) 2005 (81.4) < 0.001c
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with similar results for public transport use and cycling. 
Nevertheless, the ULI remained positively and signifi-
cantly associated with active travel modes (walking, 
cycling and public transport), and negatively associated 
with private motor vehicle use.

Noting that the two approaches to ULI construction—
excluding and including air quality—do not have the 
same distribution, this result may be better represented 
by considering the estimated effect per interquartile 
range. For the ULI excluding air quality (IQR 6.64), the 
AOR per IQR increment for taking at least one walking 
trip was AOR 2.29 (95% CrI 2.06, 2.56); while for the ULI 
including air quality (IQR 4.98) the AOR was 1.75 (95% 
CrI 1.56, 1.96). This reveals a substantial reduction in 
estimated effect size for the model including the air qual-
ity indicator.

Aggregation
To investigate the effect of aggregation, we refitted the 
model substituting Mesh Block and SA1 averages for the 
true address level indicators (Table 5). For some indica-
tors, aggregation had little or no influence, however, for 
public transport the estimate of the effect size was biased 
upwards: when using SA1 level aggregation instead of 
address level data the increased odds of walking per 
unit of public transport access changed from 5% to 8%; 
the estimated percentage increase in odds of walking for 
transport for a unit change in ULI also increased approx-
imately 2% in magnitude to 15% (95% CrI 13%, 17%).

Threshold method
The final conditionally scaled and normalised ULI esti-
mates, calculated using soft thresholds, showed an 
increased range and reduced interquartile range com-
pared with alternate hard threshold versions (Table  7). 
Comparison of the 25th, 50th (median) and 75th per-
centile positions of the distribution for the destination 
access-related indicators across hard and soft  threshold 
versions highlight the value of soft thresholds. For exam-
ple, based on the raw version of the hard threshold public 
transport access indicator, an average of 68.4% of resi-
dential addresses have access to public transport within 
recommended walking distance; using the soft threshold 
indicator we see that, in general, effective access scores 
range between 32.3% and 95.5%, with a median of 81.9% 
and reduced mean and standard deviation of 64.5± 36.1 . 
These results support the intuitive notion that depend-
ing on where a person lives, using hard or soft  thresh-
old approaches to destination access will meaningfully 
impact the estimate for a given indicator and overall live-
ability for that particular address.

The bivariate distribution of hard- and soft-threshold 
liveability, stratified by centrality of LGA is presented 
in Fig.  6. Addresses located in inner city LGAs had an 
average soft ULI score of 101.6± 3.32 , which evaluated 
separately using a t test was 2.6 points higher ( p < 0.001 ) 
than that of the combined average of middle ( 99.2± 3.16 ) 
and outer ( 98.8± 4.29 ) LGAs. A similar trend observed 
using hard thresholds.

The marginal averages of the ULI calculated using the 
two approaches to destination measurement were similar 
regardless of the air quality inclusion, however the soft 
threshold ULI had a small increase in standard deviation 
(Table 6). The inclusion of air quality decreased variation 
in both ULI versions: excluding air quality, hard thresh-
old ULI 99.2± 4.9 and soft threshold ULI 99.2± 5.0 ; 
including air quality, hard threshold ULI 99.1± 3.8 and 
soft threshold ULI 99.2± 3.9.

The hard and soft thresholds of the ULI (with and 
without air quality) and their respective equivalent ULIs 
were highly correlated with each other (population cor-
relation ρ = 0.97, Table 8). The lower left and upper right 
triangle segments of Table  8 respectively detail correla-
tion between indicators and their composites for the 
hard and soft threshold ULI versions; the matrix diagonal 
presents the correlation between hard and soft threshold 
ULI versions of the equivalent indicator. Air quality was 
negatively correlated with both hard and softthreshold 
walkability (respectively, ρ = − 0.65 and ρ = − 0.67).

Discussion
There is growing recognition internationally that more 
‘liveable’ neighbourhoods and cities positively impact 
quality of life and the health and wellbeing of residents. 
However, to date, the field has been hampered by meth-
odological limitations and lack of measurement. This 
has made it difficult to draw robust conclusions about 
the combined health effects of liveability attributes, and 
therefore to inform and monitor policy recommenda-
tions for creating liveable cities that enhance health and 
reduce inequities. We sought to respond to these limita-
tions by creating an evidence-informed, policy-relevant 
tool that measures the distribution of urban liveability 
within cities. Importantly, the ULI enables interrogation 
of how liveability is related to health and wellbeing, and 
for whom. Such evidence can be used to inform policies 
and targeted interventions to plan for cities that optimise 
health for all.

Population-level association between liveability and travel 
behaviour
Transport mode choice was associated with ULI both 
in univariate analysis and in the hierarchical logistic 
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regression model. Our model predicts doubling to tri-
pling the incidence of walking, public transport usage 
and cycling in communities with the highest compared 
with the lowest ULI scores. This suggests that if we 
designed more liveable communities, at the population 
level, there would be an almost-linear overall increase in 
the number of people walking for transport on any given 

day, offset by a decrease in people travelling by private 
motor vehicles.

Estimated effects of such magnitude seem optimis-
tic and, of course, multiple other factors may have con-
tributed to these estimates. In particular, the models 
also indicate that there is large variation in people’s 
preferences: people with stronger preferences towards 
active travel are more likely to move into more liveable 

Table 7 Summary of address-level hard- threshold indicator and ULI (in italics) distribution

Constituent sub-indicators contributing to walkability score are included for reference purposes

* Sensitivity analysis
†  Indicators or composite indices with values which may be impacted by choice of hard- or soft- destination threshold

Hard threshold ULI

Mean ± SD 25th p. Median 75th p. Min. Max.

Raw indicators

Walkability† 0.0 ± 2.4 − 1.3 − 0.1 1.0 − 7.4 13.4

 Daily Living (/3)† 1.8 ± 1.0 1.0 2.0 3.0 0.0 3.0

 Dwellings per Ha 14.1 ± 5.8 11.1 13.3 15.7 0.0 52.1

 3 + way street connections per  km2 70.2 ± 20.5 60.3 67.4 76.2 2.0 201.2

Social infrastructure mix (/16)† 7.1 ± 3.7 4.0 7.0 10.0 0.0 16.0

Public transport access meets policy (%)† 68.4 ± 46.5 0.0 100.0 100.0 0.0 100.0

Large park access (%)† 49.0 ± 50.0 0.0 0.0 100.0 0.0 100.0

Air pollution (predicted  NO2 ppb.) 8.9 ± 2.6 7.1 8.7 0.3 3.6 34.9

Affordable housing (SA1 %) 11.4 ± 8.9 5.4 10.5 16.2 0.0 100.0

Local work opportunities (SA2 %) 26.6 ± 11.2 19.4 24.4 29.7 10.0 68.7

Conditionally scaled (compressed outliers)

Walkability† −0.1 ± 2.1 − 1.3 − 0.1 1.0 − 7.2 7.2

 Daily Living (/3)† 1.8 ± 1.0 1.0 2.0 3.0 0.0 3.0

 Dwellings per Ha 13.9 ± 4.9 11.1 13.3 15.7 0.0 31.4

 3 + way street connections per  km2 69.2 ± 17.0 60.3 67.4 76.2 8.7 131.6

Social infrastructure mix (/16)† 7.1 ± 3.7 4.0 7.0 10.0 0.0 16.0

Public transport access meets policy (%)† 68.4 ± 46.5 0.0 100.0 100.0 0.0 100.0

Large park access (%)† 49.0 ± 50.0 0.0 0.0 100.0 0.0 100.0

Air pollution (predicted  NO2 ppb.) 8.8 ± 2.3 7.1 8.7 10.3 3.6 16.6

Affordable housing (SA1%) 11.1 ± 8.2 5.4 10.5 16.2 0.0 38.2

Local work opportunities (SA2%) 26.2 ± 10.2 19.4 24.4 29.7 10.0 60.1

Normalised, conditionally scaled Indicators, with 
composite index

ULI† 99.2 ± 4.9 95.9 99.4 102.5 83.1 118.9

ULI including air quality*† 99.1 ± 3.8 96.6 99.2 101.7 84.9 112.6

 Walkability 100.0 ± 10.0 94.1 99.7 104.9 66.6 134.2

  Daily Living (/3)† 100.0 ± 10.0 92.3 101.9 111.5 82.7 111.5

  Dwellings per Ha 100.0 ± 10.0 94.4 98.9 103.8 71.7 135.9

  3 + way street connections per  km2 100.0 ± 10.0 94.8 99.0 104.1 64.3 136.8

Social infrastructure mix (/16)† 100.0 ± 10.0 91.6 99.8 108.0 80.7 124.3

Public transport access meets policy (%)† 100.0 ± 10.0 85.3 106.8 106.8 85.3 106.8

Large park access (%)† 100.0 ± 10.0 90.2 90.2 110.2 90.2 110.2

Air quality 100.0 ± 10.0 93.5 100.5 107.4 66.2 122.7

Affordable housing (SA1 %) 100.0 ± 10.0 93.0 99.3 106.3 86.4 133.2

Local work opportunities (SA2 %) 100.0 ± 10.0 93.3 98.2 103.4 84.1 133.2
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neighbourhoods, if they can afford to do so. Indeed, pre-
vious studies have suggested a latent demand for more 
walkable communities, with the majority of people liv-
ing in low walkable environments preferring instead to 
live in areas where they could walk to local amenities [52, 
53]. However, other factors influence people’s choice of 
neighbourhoods, with the most important factors being 
housing affordability [54]. As such, it seems unlikely that 
neighbourhood selection as a common cause can explain 
all of the observed association; the influence of neigh-
bourhood selection is not necessarily greater than that of 
built environment on behaviour [55].

At least some of the observed effects are likely due to 
neighbourhood selection. Future studies could consider 
measuring and adjusting for personal preferences and 
length of time in neighbourhood. In this study, we used 
a cross sectional state government transport survey data 
set, which did not include preferences; this makes it chal-
lenging to assess such conflicting effects. Overcoming 
such limitations requires both travel survey data as well 
as preferences to be collected, in a longitudinal study. 
This could be in the form of (say) a natural experiment 
[56, 57]. Testing the ULI within the context of a natural 
experiment would enable the independent effect of urban 
liveability to be rigorously established by disentangling it 

Fig. 6 Scatterplot of hard‑ and soft‑threshold versions of the ULI with 
marginal distribution boxplots and cross‑median fitted splines of 
trend by LGA centrality: Inner (blue), Middle (red) and Outer (green)

Table 8 Correlation matrix for hard- and soft-threshold sets of indicators, the ULI including and excluding air quality
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- Daily Living (/3) 0.60 0.72 0.76 0.95 0.52 0.27 0.76 0.77 -0.05 -0.55 0.09 -0.19
- Dwellings per Ha* 0.28 0.51 0.86 0.47 1.00 0.59 0.65 0.37 -0.08 -0.67 0.04 -0.30
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* These variables do not employ hard- or soft- thresholds for distance; hence, perfect correlation between the hard and soft ULI
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from the differing demographic, personal preference, and 
previous behaviour profiles of residents.

An important consideration when evaluating the asso-
ciation between a composite indicator of environmental 
exposure such as the ULI and a particular health related 
outcome like travel mode choice, is that some of the com-
ponent indicators will be more or less strongly associated 
with the outcome than others; by considering the overall 
association for the ULI, the associations of the underly-
ing indicators may be masked. For this reason, we ana-
lysed the associations with each indicator in addition 
to the ULI using separate models. As a summary meas-
ure, the ULI is best considered as a lens through which 
to consider liveability; presented with a particular score, 
it invites users to interrogate how the various domains 
of liveability contribute to this estimate. This is readily 
achieved through interactive mapping, where a chorop-
leth of area level liveability distribution may be clicked to 
display a break-down of the indicators giving rise to the 
ULI for a particular area.

A prototype online interactive dashboard for the pilot 
urban liveability index  is under development by our 
group at the time of writing (Fig. 7). A user can display 
a choropleth visualisation for a chosen indicator at a 
selected scale and use hover or click behaviour to explore 
different aspects of summary information, such as the 
usual range of values associated with addresses within a 
particular area; the mix of indicators which contribute to 
a liveability estimate; and various administrative bounda-
ries. The maps included in the Additional file 1 animation 
were also derived from a prototype of such an approach.

Assessing the relationship between urban liveability 
and air quality
As noted earlier, in our original conceptualisation of live-
ability, air quality was considered an outcome of effective 
city planning decision-making [7, 9] and was not scoped 
for inclusion in the liveability index [10]. However, there 
are growing global concerns about the health impacts of 
air quality. With approximately 5% of mortality in 2017 
estimated to be attributable to ambient particulate mat-
ter pollution, air quality is considered the 8th leading 
risk factor for death globally [58]. Hence, we conducted a 
sensitivity analysis to evaluate the impact of creation and 
testing of an alternate ULI including air quality. Compar-
ing the modelled association between active transport 
and the ULI with and without air quality, we found that 
the ULI without air quality resulted in a better fit. This 
result is not surprising, as there is no a priori reason to 
expect a strong direct effect of air quality on travel mode 
choice. Moreover, air quality was negatively correlated 
with most other sub-indicators, including walkability; a 
relationship noted in recent international literature [59, 
60].

The negative correlation between air quality and active 
transport behaviour, as well as the negative correlation 
with other indicators, indicates that people are more 
likely to walk and cycle in areas where air pollution is 
higher. This is not surprising because those areas have 
more amenities, but nevertheless is a concern. Generally, 
highly walkable areas attract both pedestrians and traffic 
because there are more destinations available.

Select indicator, grouped by domain

Choose scale of aggrega�on

Display administra�ve boundary

Hover for summary informa�on

Choose satellite or plain base map

Click to display indicators 
contribu�ng to liveability

Op�on to view full ‘community 
profile’ to be developed

(yellow boundary is current Urban Growth Area)

View explana�on of indicator

Fig. 7 Annotated screenshot of the pilot Urban Liveability Index in a prototype urban indicators observatory, currently under development by the 
Healthy Liveable Cities group at RMIT University
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Air pollution concentrations in Melbourne are rela-
tively low by global standards. However, ‘safe’ long-term 
exposure thresholds have not been identified for most 
air pollutants. There is a clear tension here: a major chal-
lenge to policy-makers is how to design highly walkable 
mixed-use areas with good access to shops and services, 
while minimising exposure to vehicular traffic and con-
sequential, traffic-related air pollution. Nevertheless, evi-
dence suggests that the health benefits gained from using 
active transport modes, such as walking and cycling, 
outweigh the risks when compared to sedentary modes 
of transport such as driving [61, 62]. Nevertheless, our 
results suggest there would be benefit to exploring how 
streets with shops and services could be pedestrianised 
to avoid exposing pedestrians and local residents to 
transport-related air pollution.

Analysis using aggregated liveability summaries
Refitting of the travel behaviour models using data aggre-
gated at progressively larger scales increased the magni-
tude of effect size estimates for the association between 
the ULI (all versions); odds ratios increased at each larger 
scale for walking and cycling and reduced for private 
motor vehicle. It is well known that the use of aggregated 
data may lead to biased estimates [63]. In this study, we 
observed estimated effect sizes increasing in magnitude 
with higher levels of aggregation for the association 
between public transport access and the probability of 
making a walking trip. This upward bias was apparent 
even though our aggregation in our study was based on 
complete data on individual-level indicators. However, 
area-level estimates are sometimes based upon a small 
sample or singleton (e.g. population weighted centroid) 
of representative points within each area; this would lead 
to further measurement error, and impact the bias and 
precision of estimates obtained from a regression analy-
sis or other statistical model. In cases where the accu-
rate representation of individual liveability is a concern 
and access to sufficiently granular data is achievable, we 
recommend the calculation of individual-level liveability 
estimates.

Destination access measurement and threshold methods
The use of soft  threshold destination access indicators 
was a novel method developed for this project, designed 
to depict a more nuanced picture of the achievement of 
policy standards, than that derived using hard thresholds. 
In this study we found that the hard and soft  threshold 
ULI versions were highly correlated overall and bore sim-
ilar relationships with their constituent indicators. How-
ever, we identified socio-spatial differences. For example, 
inner- and middle-regions of relatively greater disad-
vantage tended to receive a larger increase in liveability 

rank than those in outer regions when estimating live-
ability using soft instead of hardthresholds for destina-
tion access. This finding highlights the importance of the 
selected threshold for indicator measurement, and subse-
quent impact on representation of the spatial distribution 
of liveability, alongside the importance of socio-eco-
nomic context in testing appropriate methods. By allow-
ing residential addresses to have access scores of ‘some’ 
(soft thresholds) rather than ‘none’ (hard thresholds), we 
could better identify and locate population inequities. 
This is highly relevant to policy-makers seeking practical 
ways to reduce spatial inequities across a city.

A limitation of a soft threshold indicator of destination 
access is that the area-aggregated mean no longer rep-
resents the proportion of those who have access. Hard 
thresholds, which are readily interpreted as proportions 
when aggregated, are of clear use for those seeking to 
communicate and measure adherence to urban policy. 
However, the softthreshold indicators may be a more use-
ful measure for assessing effective access, and for other 
purposes such as mapping relative inequities, identifying 
locations for interventions, or for statistical analysis pur-
poses such as regression modelling and simulation. Fur-
thermore, once incorporated into a composite measure, 
the interpretative benefit from use of hard threshold indi-
cators is lost. As such, the more detailed measurement of 
access which soft threshold indicators impart to the ULI 
composite measure is appreciable.

There is a broad literature on calculation of individual 
level measures which can be used to estimate accessibility 
given limits or weights on distance, trip time, proximity 
and utility of multiple transport choices, and account-
ing for attractiveness of destinations; these are alterna-
tive options which may be considered [64, 65]. In many 
instances it may be desirable to consider the influence of 
proximity to an amenity on a health outcome using dis-
tance alone. However the present index has evolved out 
of research concerned with policy based indicators which 
recommend access to different kinds of destinations 
within specific distances; that is, liveability with regard to 
meeting evidence-based policy recommendations, where 
available. Had distance alone been used, all kinds of des-
tinations for which proximity was considered would 
have been treated equally important; weighting could 
be introduced to re-introduce a sense of relative impor-
tance, however this would again result in a measure even 
further abstracted from existing policy. In the present 
study we adopted a policy-informed threshold distance 
approach as used on grounds of parsimony and relevance 
to our study aim of providing a policy relevant liveabil-
ity index [66]. The present study introduces and provides 
some preliminary consideration of the validity of the soft 
threshold approach, contrasted with the hard threshold 
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approach; future studies may expand on this, with com-
parisons to other measures.

Liveability and centrality of Local Government Area
ULI estimates were higher on average for addresses 
located within inner-Melbourne than for those in mid-
dle and outer regions (Additional file  1: Video S1). This 
finding reflects acknowledged inequities in the distribu-
tion of amenities, employment opportunities and trans-
port infrastructure access, which policy initiatives such 
as the Victorian Governments Plan Melbourne 2017–
2050 seek to address [5, 67]. The rapid growth of cities 
and associated low density development on the urban 
fringe perpetuates inequities in outer suburban areas. 
While housing may be more affordable, these areas may 
not facilitate affordable living because they lack proxi-
mal access to public transport and local amenities. Our 
research indicates that densities of at least 30 dwellings 
per hectare are required to create neighbourhoods that 
encourage active modes and public transport use and 
decrease driving [68]. This is because sufficient density is 
required to support local economics and to make public 
transport more viable.

Indicator choice
The ULI was comprised of a modest selection of live-
ability indicators representing core domains of liveability 
and the social determinants of health, serving as a simple 
but readily calculable and useful model of the combined 
influence of the social determinant of health and well-
being. Future work can expand on this. Our time point 
of 2011 was chosen due to that being the most recent 
census available at the commencement of this project. 
However, the landscape of available data has changed 
much in recent years: General Transit Feed Specification 
(GTFS) data, has become broadly available for Australia 
and in some international settings, allows for a stand-
ardised approach to recording public transport service 
frequency. This provides a much more detailed record 
of a place’s potential for public transport than the pres-
ence of, say, a bus stop that may or may not be serviced. 
In Australia, the 2016 census allows for consideration 
of small area average times for journey to workplace by 
employment sector; this is a rich source of data for devel-
opment of spatial indicators of employment potential. 
Walkability could be disaggregated prior to inclusion in 
the ULI giving its constituent aspects more weight in 
the final composite, and nuanced with more local envi-
ronment indicators: slope, temperature, humidity, qual-
ity and accessibility of footpaths  are important aspects 
future work could consider, given data availability. Our 
suite of indicators did not capture social and cultural 
diversity, nor local mix of housing options or access to 

digital infrastructure; we acknowledge these as impor-
tant aspects of liveability. Our green infrastructure meas-
ure of large park access only evaluated quality in terms 
of size. This is relevant from a policy perspective and 
was a pragmatic option given our data limitations; how-
ever, lived experience and choice to interact or not with 
a space is may be expected to be influenced by other 
aspects includingaesthetics, quality and appropriateness 
of service provision given population demand. These are 
just some of the avenues  along which future work may 
expand on the ULI concept.

Indicator outliers and the Urban Liveability Index
The ULI method is based on approach which penalises 
inconsistency across indicators [48]. However, when 
developing our approach we considered that the poten-
tial penalty arising from variation in a set of indicator 
results could be disproportionately large relative to the 
mean of the indicators. An example would be for a resi-
dential lot in an area performing exceedingly well on all 
but one indicator, having extremely poor performance: 
the otherwise excellent performance could be dispropor-
tionately negated impacting the ULI’s face validity if the 
penalty were not constrained. We therefore implemented 
an approach whereby outliers were still penalised, but the 
maximum penalty to the overall ULI result was limited 
such that overall good performance was still rewarded. 
We considered this approach to provide improved face 
validity of the composite results compared with not 
undertaking this transformation. Future studies could 
consider the impact of outlier treatment in more detail.

ULI construction method choices
The ULI was developed as a result of considerable interest 
amongst local policy makers, about urban liveability and 
the cumulative influence of the underlying domains of 
liveability on health-enhancing behaviours of residents. It 
has also been designed to work in an interactive mapping 
application that can be used as a diagnostic tool by pol-
icy-makers to identify what interventions might enhance 
the living conditions of residents in different part of Mel-
bourne. It is plausible that a simpler index would suffice, 
particularly in terms of predicting travel mode choice. 
For example, it could be that in some cities, density alone 
would be a sufficient proxy of the ULI. However, in some 
cities or areas within cities, high density development is 
simply ‘high rise sprawl’, because it is not accompanied 
by amenities that enhance the liveability of a city. In this 
sense, some caution is required. Nevertheless, this ques-
tion warrants further investigation in terms of develop-
ing a more simple, parsimonious index that captures the 
essence of a liveable city. Given global interest in liveabil-
ity, we believe this research is warranted.
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We adopted the Mazziota–Pareto method for compos-
ite index construction following our review of the OECD 
guide to composite indicator construction and literature 
on developing composite indicators for wellbeing and 
sustainability. Factor analysis and principal component 
analysis (PCA)  were options flagged for consideration 
due to their use for achieving a more parsimonious index 
through dimension reduction. However, a key driver of 
our choice of method was ability to meaningfully com-
municate the ULI—and performance of its underlying 
domains—to policy makers and planners who do not 
necessarily have backgrounds in statistical methodology. 
The ULI draws upon the established MPI-approach for 
calculation of composite indicators in wellbeing contexts, 
and its meaning when aggregated for an area is readily 
conveyable in plain language to a lay audience: it reflects 
an area’s relative performance across core aspects of live-
ability and incentivises balanced performance across 
these domains.

When constructing the ULI we were not only chal-
lenged to contemplate which objective exposures should 
be considered as measuring liveability, but also to deter-
mine their relative importance. Finding consensus 
amongst experts and stakeholders on weighting when 
constructing composite indicators has been noted as a 
fraught task [87]. Factor analysis and PCA are attractive 
in that they allow empirical derivation of such weights. 
However, such weighting will be contingent on the sam-
ple used to inform the analysis and so this weighting may 
not be generalisable to other contexts. In the preliminary 
stage of our development of the ULI we considered other 
methods such as the ‘Benefit of the Doubt’ approach 
which was explicitly designed to be used in policy con-
texts: sensitive comparisons between jurisdictions with 
differing contexts and priorities may require use of a 
weighting scheme that plays to the relative strengths of 
an area to achieve common agreement [87]. However, we 
considered that this endogenous approach to weighting 
could negate the combined importance of these domains; 
hence our choice of an approach that encourages a bal-
anced, but well-performing score across all domains.

The ULI does not directly weight the indicators from 
which it is formed. However, the relative importance of 
each indicator in the ULI is influenced by the choice and 
form of indicators included: for example, by including 
the walkability index in its composite form as we did in 
this study each of its components (dwelling density, street 
connectivity, and land use mix) were afforded relatively 
less weight than had they been included separately as 
indicators in their own right. Likewise, were we to have 
included the social infrastructure mix sub-domains—
’early years’, ‘education’, ‘community, culture and leisure’, 
‘health and social services’ and ‘sport and recreation’—as 

separate indicators this would have added more weight 
to the importance of proximity to a well serviced com-
munity. We plan to investigate these options further in 
future development of the ULI. Other future studies may 
therefore wish to compare various approaches to index 
development.

Future applications
The ULI scripted approach was designed with extension 
to future applications in mind, in particular to facilitate 
creation of a national liveability index for Australian cit-
ies. It is possible to extend the ULI to accommodate sub-
group specific domain weighting profiles, recognising 
that even on average, not all indicators would be of equal 
importance to all groups of people. For example, one’s 
age, household composition, level of functional abil-
ity, or personal preferences could influence the relative 
importance of specific measures. An approach account-
ing for different ‘liveability profiles’ could be informed 
and developed through mixed methods studies with sub-
populationsor through natural experiments, in order to 
estimate a demographically-nuanced ULI.

The ULI aligns with and supports a number of the UN 
Sustainable Development Goals (SDGs), including goals 
3  ‘Good health and well-being for people’ and 11  ‘Sus-
tainable cities and communities’ [3]. More ‘liveable’ cities 
are likely to encourage active forms of transport, and pos-
itively impact residents’ wellbeing, enhance resilience and 
sustainability, and reduce poverty [84]. Therefore, explor-
ing whether it is feasible to extend this work to other city 
contexts and for use as a monitoring tool by UN Habitat 
to evaluate the New Urban Agenda [85, 86] is worthy of 
consideration. The indicators included in the ULI may be 
more or less relevant for different cities and relevant data 
may not always be readily available, particularly for cities 
located in rapidly developing countries. Future research 
of this nature might help to better address equity ques-
tions, such as ‘liveable for whom?’ [69].

A major opportunity in the face of population growth 
and rapid urbanisation, is to monitor changes in live-
ability across time. The geographic and temporal scope 
of this pilot project was limited for pragmatic reasons 
to Melbourne in 2011; a logical extension of this project 
will be to calculate estimates of ULI for other Australian 
capital cities and then monitor changes over time. This 
work has commenced with the development of national 
liveability indicators for Australian capital cities, aligned 
to both health outcomes and policy [70]. The next stage 
will involve developing a comparable ULI for these cities. 
More broadly, we are also consulting with regional and 
rural local governments to understand how the concept 
of liveability may be adapted to meet the distinct needs 
of populations residing in non-metropolitan locales. To 
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be usable with longitudinal data, the ULI will need to be 
adapted to calculate changes for a particular locale over 
time. Three options are available: standardising the con-
stituent indicators over all space–time points, or, with 
respect to the baseline observations, or, with respect to 
the final observations [71]. Similarly, multiple regions 
could be compared either with the overall standard, or 
one region could be assessed to the standard of a refer-
ence region [24].

Moving forward, it is envisaged the ULI could be use-
ful in providing both exposure and outcome tools for 
researchers and other stakeholders, in particular urban 
planners who are attempting to create more health-pro-
moting liveable cities. As an exposure measure, the ULI 
is designed to enable linkage with geocoded population 
health and social survey datasets. In this way, research-
ers could examine how the combination of different 
built environment attributes (related to the social deter-
minants of health) relate to a range of health, wellbe-
ing, social and economic outcomes as captured through 
population surveys (including linking with longitudinal 
data). The ULI could also be used to study inequities in 
access to social determinants of health, and associations 
with both healthy behaviours and health outcomes may 
be compared with those of simpler or more focused-
measures such as the walkability index. In contrast to 
these, the ULI extends the research questions that can 
currently be asked of many built environment and health 
data sets by investigating the cumulative effects of inte-
grated urban planning, which is likely to be of particular 
interest to city policy-makers. As an outcome measure, 
the ULI could be mapped and used to monitor cross-
sectionally and longitudinally the liveability of a given 
neighbourhood or region, and to identify inequities in 
urban liveability between and within cities. In the Aus-
tralian context, we have already begun identifying and 
testing liveability indicators and evaluating whether poli-
cies designed to create liveable cities are being delivered. 
This allows us to move beyond observational analysis to 
undertake natural experiments of city planning policies, 
and to enable domains of ‘liveability’ to be visualised 
across given study regions [70]. In this way, the ULI could 
be used to benchmark and monitor progress towards 
achieving local, state, or national policies that aim to cre-
ate more liveable communities.

Conclusion
The ULI was developed to study the impact of the dis-
tribution of accessibility and availability of liveability 
domains conceptualised to support health and wellbeing, 
by combining these into a policy-relevant and evidence-
informed composite index. We found that living in more 
liveable areas with higher ULI scores was associated with 

higher levels of walking, cycling and public transport 
as travel modes, and lower levels of private motor vehi-
cle use. These associations were in the expected direc-
tion, approximately linear and provide face validity of 
the ULI extending commonly used walkability measures 
and capturing broader built environment attributes with 
the potential to promote health. Although these results 
require further validation elsewhere, they suggest that 
creating more liveable communities has the potential to 
produce co-benefits for public health, the environment 
and managing traffic congestion [84].

The ULI allows the evaluation of integrated urban 
planning policies for liveable neighbourhoods and for 
the health impact of the integration of those policies to 
be assessed. Moreover, the mapping of the ULI enables 
the assessment of how well policies are being delivered 
within a study region of interest, and for whom. Spe-
cific policies that are (or are not) being delivered may 
be identified through disaggregation of the ULI into its 
sub-domains, enabling identification of opportunities for 
future targeted portfolio investment. Inequities in live-
ability across cities can be visualised and interrogated 
by state and local government policy makers, in order to 
devise appropriate interventions. In addition, the ULI can 
be used as an exposure measure in statistical modelling, 
thus providing a potentially powerful tool for assessing 
the upstream determinants of the delivery of the UN Sus-
tainable Goals, alongside local urban planning policies.
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