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Abstract 

Background: It is well known that the burden caused by cancer can vary geographically, which may relate to dif-
ferences in health, economics or lifestyle. However, to date, there was no comprehensive picture of how the cancer 
burden, measured by cancer incidence and survival, varied by small geographical area across Australia.

Methods: The Atlas consists of 2148 Statistical Areas level 2 across Australia defined by the Australian Statistical 
Geography Standard which provide the best compromise between small population and small area. Cancer burden 
was estimated for males, females, and persons separately, with 50 unique sex-specific (males, females, all persons) 
cancer types analysed. Incidence and relative survival were modelled with Bayesian spatial models using the Leroux 
prior which was carefully selected to provide adequate spatial smoothing while reflecting genuine geographic varia-
tion. Markov Chain Monte Carlo estimation was used because it facilitates quantifying the uncertainty of the posterior 
estimates numerically and visually.

Results: The results of the statistical model and visualisation development were published through the release of 
the Australian Cancer Atlas (https ://atlas .cance r.org.au) in September, 2018. The Australian Cancer Atlas provides the 
first freely available, digital, interactive picture of cancer incidence and survival at the small geographical level across 
Australia with a focus on incorporating uncertainty, while also providing the tools necessary for accurate estimation 
and appropriate interpretation and decision making.

Conclusions: The success of the Atlas will be measured by how widely it is used by key stakeholders to guide 
research and inform decision making. It is hoped that the Atlas and the methodology behind it motivates new 
research opportunities that lead to improvements in our understanding of the geographical patterns of cancer 
burden, possible causes or risk factors, and the reasons for differences in variation between cancer types, both within 
Australia and globally. Future versions of the Atlas are planned to include new data sources to include indicators such 
as cancer screening and treatment, and extensions to the statistical methods to incorporate changes in geographical 
patterns over time.
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Background
There is a long history of studies showing that where you 
live matters [1–5]. This can relate to health, economics 
or lifestyle. It is no different with cancer. The existence 
of significant geographic variation in cancer incidence 
and mortality is well known [6, 7], however, most anal-
yses until now have been based on relatively broad or 
socioeconomically heterogenous geographic areas, pre-
cluding detailed area-based comparisons. A number of 
health-related and cancer-specific interactive, online 
atlases have been previously released in other countries, 
including, for example, the Environmental Health Atlas 
(UK), the National Cancer Institute Cancer Atlas (USA), 
The Centre for Disease Control Interactive Cancer Atlas 
(USA), and cancer mortality maps in Spain by province 
and municipal level [8–11]. However to date, there has 
been no comprehensive atlas of cancer in Australia.

The Australian Cancer Atlas [12], launched in Septem-
ber 2018, provides the first digital, interactive picture 
of cancer burden at the small geographical level across 
Australia, including modelled estimates of both cancer 
incidence and survival, and incorporating the statistical 
methodology and visualisation methods that are required 
for accurate estimation, interpretation and decision 
making.

Given the increasing number of cancer atlases avail-
able internationally, the variety of statistical methods and 
visualisation techniques utilised, and the inferences that 
may be drawn from the atlas estimates by researchers, 
managers, and policy makers, it is our aim here to outline 
the rationale and development of the statistical models 
used for the Australian Cancer Atlas, and the method of 
visualising the estimates from those models. In doing so, 
it is hoped that these statistical and visualisation methods 
may be used more widely, thus creating opportunities for 
more direct comparisons between the geographical pat-
terns of cancer burden and possible causes or risk fac-
tors, both within Australia and across other countries.

Methods
Geographical areas
The geographical areas that compose the Atlas are Sta-
tistical Areas level 2 (SA2s), defined by the Australian 
Statistical Geography Standard (ASGS) July 2011 edi-
tion [13]. SA2s broadly represent communities that 
interact together socially and economically, and cover 
Australia without gaps or overlap [14]. Australian SA2s 
range in size from < 1 to 520,000 km2, and in 2014 had a 
median population of 8991 (range 0 to 54,773). There are 
two main reasons for using SA2s: they provide the best 
compromise between small population and small area 
to enable modelling at a “small area” scale; and they are 

the smallest geographical areas to which cancer registries 
routinely assign patient residence at diagnosis.

Of the 2214 SA2s covering Australia, those with no res-
idential population (n = 28), no physical location (com-
prising ‘Migratory–Offshore–Shipping’ and ‘No usual 
address’ codes for each State and Territory) (n = 18), 
fewer than five residents on average per year dur-
ing 2010–2014 (n = 17), and those very remote islands 
> 500  km from the Australian mainland [Christmas 
Island, Cocos Island and Lord Howe Island (n = 3)] were 
excluded. This left 2148 SA2s for which modelled esti-
mates are provided in the Atlas.

Cancer types and outcome measures
The cancer types, classified using the 2016 version of the 
International Classification of Diseases (ICD-10) dis-
ease code (Table  1), [15] were selected based predomi-
nately on those with higher numbers of diagnoses. Due 
to discrepancies between how the state and territory 
cancer registries assigned invasive status during the time 
period of interest (2005–2014), bladder cancer (ICD-10 
C67) was excluded from the analysis. Breast cancer was 
restricted to females only, due to an insufficient number 
of breast cancers diagnosed among males for analysis. 
Due to reporting estimates by males, females and all per-
sons separately, 50 unique sex-specific (males, females, 
all persons) cancer types were included in the analysis.

Incidence
Cancer incidence refers to the number of new cancer 
cases diagnosed within a given time period. In order to 
make comparisons of cancer incidence between small 
areas with differing population size and age structure, 
incidence rates were compared rather than the number 
of cancers diagnosed. Indirect standardisation through 
the standardised incidence ratio (SIR) [16] is the pre-
ferred method of standardisation when there are very 
small numbers in some age groups, because it removes 
the substantial sampling variation that would be present 
in this situation with direct standardisation [17]. The SIR 
reflects the area-specific incidence rate relative to the 
Australian average. It is the ratio of the observed cancer 
cases to the expected number of cases, the latter adjust-
ing for differences in population between SA2s and dif-
ferences in age structure of the population within an SA2.

Survival
Survival is a key measure of cancer patient care [18]. Con-
sistent with standard reporting from population-based 
cancer registries [18], the relative survival framework 
was used in this Atlas. Relative survival is an estimate of 
net survival, which aims to measure the deaths that are 
specifically associated with a cancer diagnosis. For the 
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Atlas, relative survival estimates up to 5 years after diag-
nosis were generated using the period method [19]. The 
relative survival models estimate the excess hazard ratio 
(EHR), which, for a given geographical area, is inter-
preted as the risk of dying from a given cancer within 
5 years after diagnosis relative to the Australian average 
risk [18].

Time period
To maximise the robustness of the spatial estimates due 
to the sparse data (Table 1), the cancer cases were aggre-
gated over multiple years. For cancer incidence, the five 
most commonly diagnosed cancers and the category 
“all cancers” used data aggregated over the latest 5-year 
period (2010–2014), while all other cancer types com-
bined cases over the latest 10-year period (2005–2014). 
For the cancer survival estimates, data were aggregated 
across the entire ‘at-risk’ time period for which popula-
tion mortality data were available, namely 2006–2014. 
Given that the period method was being used to calculate 

relative survival, cases included in the survival analyses 
could have been diagnosed from 2001 onwards.

Data sources
De-identified individual level data for each case of can-
cer diagnosed in Australian residents during the speci-
fied period were obtained from the Australian Cancer 
Database (ACD), which is maintained by the Austral-
ian Institute of Health and Welfare (AIHW) [20]. The 
ACD contains records on all primary invasive cancer 
cases (excluding basal and squamous cell carcinoma of 
the skin) diagnosed in Australian residents and notified 
to one of Australia’s eight state and territory population 
cancer registries. Australia has mandatory cancer notifi-
cation, ensuring virtually complete population incidence 
data. At the time of analysis, the ACD contained records 
of cases diagnosed from 1982 to 2014 (1982–2013 in 
New South Wales), although geographical information 
for cancer cases at the SA2 level was only available from 
1996 onward. Cases with missing SA2 details (0.8% of all 
cancers) were excluded from the analyses.

Table 1 Time period and data sparsity by type of cancer 

M males, F females, P persons
a  Females only
b  Males only note that only the 2148 SA2s considered to have a residential population are included

Cancer type Total diagnoses Number of SA2s with 0 counts Number of SA2s with 0 
people at risk 2006–2014

M F P M F P

2010–2014

 All cancers C00–C97, D45, D46, D47.1, D47.3–D47.5 615,192 29 42 26 21 31 18

 Bowel cancer (C18–C20) 74,223 71 88 61 60 74 48

 Lung cancer (C33–C34) 54,792 90 115 74 71 91 64

 Melanoma of the skin (C43) 61,310 95 110 73 74 88 42

 Breast  cancera (C50) 77,992 – 62 – – 46 –

 Prostate  cancerb (C61) 99,681 57 – – 41 – –

2005–2014

 Head and neck cancer (C00–C14, C30–C32) 40,441 72 211 67 73 223 67

 Oesophageal cancer (C15) 13,362 252 700 170 264 751 177

 Stomach cancer (C16) 20,084 192 433 139 201 476 146

 Liver cancer (C22) 14,985 244 660 172 264 728 186

 Pancreatic cancer (C25) 26,939 162 223 103 176 253 106

 Cervical  cancera (C53) 7930 – 302 – – 308 –

 Uterine  cancera (C54–C55) 22,020 – 101 – – 105 –

 Ovarian  cancera (C56) 13,267 – 199 – – 211 –

 Kidney cancer (C64) 28,212 114 248 91 116 252 92

 Brain cancer (C71) 14,933 255 392 156 269 418 165

 Thyroid cancer (C73) 21,895 443 189 123 452 192 125

 Non-Hodgkin lymphoma (C82–C86) 45,169 96 146 71 96 152 71

 Myeloma (C90) 15,264 279 431 172 294 456 182

 Leukaemia (C91–C95) 30,737 124 200 88 134 217 91
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Estimated residential population data grouped for Aus-
tralia by SA2, year, sex, and 5-year age group (to 85+ 
years) were obtained from the Australian Bureau of Sta-
tistics (ABS) [21]. These population data were only avail-
able from 2001 onward.

Unit record population mortality data for all causes of 
death combined were only available from the Registry of 
Births, Deaths and Marriages [22] for the period during 
2006 to 2014. The unit record data included details about 
sex, year of death, age, and SA2 at death.

Statistical models
Spatial smoothing
Due to the inherent variation that is associated with low 
numbers in small geographical areas, spatial smooth-
ing was used to increase the stability of the result-
ing estimates and protect confidentiality. In effect, 
spatial smoothing borrows information from neighbour-
ing areas, seeking to estimate the underlying rate, rather 
than simply reporting the more pronounced random var-
iation arising from very low numbers of observed cases 
when there are few residents. Spatial smoothing also 
alleviates the effect of the somewhat arbitrary nature of 
boundaries defining the geographical areas.

There are several ways to carry out statistical smooth-
ing. For the Atlas we used Bayesian spatial models, in 
particular, conditional autoregressive models. Two main 
advantages of this approach were that Bayesian models 
readily incorporate the spatial correlation between areas 
in a natural manner as part of the prior information, rec-
ognising that adjoining geographical areas are likely to 
have some similar characteristics, and also that the prob-
abilistic description of each of the unknown quantities 
provides a unique capacity to better quantify the extent 
of uncertainty around the spatial estimates.

The use of prior distributions to specify the unknown 
parameters is especially helpful for spatial parameters as 
it imposes a structure on the underlying stochastic pro-
cess that is consistent with Tobler’s first law of geography, 
namely that “near things are more related than distant 
things” [23]. The resulting spatial smoothing, or shrink-
age, pulls posterior estimates towards a local or global 
mean, improving the stability of the estimates, especially 
areas with small populations, thus providing more robust 
estimates [24, 25]. The extent of the smoothing depends 
on both the data and the specific prior distribution used.

Parametric Bayesian models provide a posterior dis-
tribution for the unknown parameters, not just a point 
estimate. This is helpful in understanding the uncer-
tainty in the estimates [26, 27]. Estimates obtained from 
Markov Chain Monte Carlo (MCMC) sampling are par-
ticularly useful as several statistics such as credible inter-
vals around the estimate and probability that the estimate 

reflects a real difference to the Australian average can be 
derived which quantify uncertainty from several different 
perspectives.

Spatial weights
A feature shared by all spatial prior distributions is the 
specification of spatial proximity between the random 
effects for each pair of areas. This usually takes the form 
of a spatial weights matrix, W [26, 28–30]. There are 
many ways to define spatial proximity, which can be 
either continuous, e.g. distance between areas, or dis-
crete, e.g. belonging to the “neighbourhood” of adjacent 
areas. The most common definition is the binary, first-
order, adjacency weights matrix which has elements

This is the specification used in the Atlas, where SA2s 
are considered adjacent if they share a common land 
boundary of any length (so a SA2 wholly enclosed within 
another SA2 is considered adjacent to that SA2 and thus 
only has one neighbour). Under this definition, there 
were 12 island SA2s without neighbours. To enable spa-
tial smoothing for these areas, at least one non-adjacent 
area was assigned as a neighbour. This was usually the 
mainland area connected by a bridge or ferry service, or 
failing that, the closest mainland point.

Although different specifications of the weights matrix 
can impact smoothing and lead to different inference 
on the spatial patterns, weights based on a distance 
decay function are usually deemed more suitable when 
the areas vary greatly in shape and size [31, 32], or the 
population varies in size or age structure [33]. We chose 
binary adjacency weights for several reasons. First, alter-
native weights such as those based on distances between 
area centroids do not automatically induce the Markov 
property [34, 35], whereas a sparse spatial weights matrix 
is computationally advantageous. Second, distance-based 
weights with a high rate of decay as is commonly seen in 
disease atlases tend to become similar to row-standard-
ised, binary, adjacency weights [36], which seemed coun-
terproductive. Conversely, a low rate of decay increases 
the region of influence implied by the spatial weights 
matrix, which may imply unrealistic spatial dependen-
cies between the areas [36]. Fewer neighbours were not 
only computationally advantageous, but also tended 
to perform at least as well as models with more neigh-
bours [29, 33, 36]. Given the vast differences in the size 
of SA2s in Australia, we also found that distance-based 
weights, with a suitable cut-off to retain the Markov 
property, resulted in excessively large or small regions of 
influence. Third, adjacency-based weights complement 
the discrete nature of the observed data [30], and grant 

(1)wij =

{

1 if areas i and j are adjacent
0 otherwise.
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the straightforward interpretation of including the aver-
age response values of the neighbouring areas as an extra 
predictor [28]. Fourth, adjacency-based weights are easy 
to implement and alternative definitions do not necessar-
ily improve results [29, 33]. Moreover, an investigation of 
different spatial models (see Cramb et al. [37]) and sensi-
tivity analyses conducted as part of the development of 
the Atlas indicate that the type of model and the hyperp-
rior controlling the variance of each spatial random effect 
has a greater influence on smoothing than the spatial 
weights.

Bayesian hierarchical models
The models chosen for cancer incidence, and to some 
extent, relative survival, were based on the recommen-
dations from Cramb et al. [37]. In addition to the choice 
of neighbourhoods via the spatial weights, described 
above, a range of smoothing approaches across the 
nominated neighbourhoods are possible. Models may 
employ the same smoothing parameter consistently over 
the entire region (‘global smoothing’) or allow it to vary 
geographically based on specific characteristics such as 
geographical, social and administrative measures (‘local 
smoothing’). Furthermore, there are choices to be made 
about the underlying model, the sampling distribution 
to use for the data, the inclusion of fixed and/or ran-
dom effects, and the specification of the prior distribu-
tions for the unknown parameters. A range of smoothing 
approaches and also model forms were considered for the 
Atlas, including parametric and semi-parametric models. 
The final choice was made by comparing the performance 
of each model and spatial prior configuration across a 
range of criteria, including goodness-of-fit, computation 
time, tendency to under- or over-smooth, and plausibility 
of estimates.

The model chosen for both cancer incidence and rela-
tive survival was that proposed by Leroux et al. [38]. The 
Leroux model was favoured over other spatial models 
including the popular BYM model [39] because it pro-
vided the best compromise between the aforementioned 
criteria [37]. This model is a specific case of the generic 
three-stage hierarchical model proposed by Best et  al. 
[40] for the purpose of disease mapping.

Incidence model The cancer incidence model is given by,

where yi is the observed number of cases for the ith area, 
Ei is the expected number of cases, θi is the log-SIR, β0 is 
the overall level of log-SIR (a fixed effect), and Si is the 
spatial random effect modelled by the Leroux prior

yi ∼ Poisson
(

Eie
θi
)

for i = 1, . . . , 2148SA2s

θi ∼ β0 + Si

Here wij are the elements of the spatial neighbourhood 
matrix defined in Eq. (1), and ρ determines the spatial auto-
correlation between the areas. The modelled estimates are 
effectively age-adjusted since the expected counts take into 
account the population size and age-structure. The prior 
distributions for the remaining parameters were weakly 
informative, specifically,

where the inverse Gamma distribution IG(·, ·) is param-
eterised in terms of shape and scale. See the section “Sen-
sitivity analyses” for further discussion of these priors. 
The key output from this model and reported in the Atlas 
is the SIR, given by exp(θi).

Relative survival model The relative survival model is 
closely based on that proposed by Fairley et al. [41] except 
that the spatial random effect was modelled by the Leroux 
prior rather than the BYM prior [39]. The likelihood for the 
number of deaths observed for the ith area in the kth strata 
and tth follow-up interval is Poisson,

for i = 1, . . . , 2148 areas, k = 1, . . . ,K  age-sex-site 
strata, and t = 1, . . . , 5 follow-up years. The value of K 
depends on the cancer being modelled, but in general, 
it accounts for broad age groups (15–54, 55–64, 65–74 
and 74–89  years), and for all persons only, sex (males, 
females). These broad age groups were chosen based on 
the frequency distribution of the observed cancers diag-
nosed, with the intention of relatively equal numbers of 
cancers within each age group. The alternative option, 
equal-spaced age ranges, would have increased the spar-
sity of data within younger ages, so was not considered 
further. In addition, for the aggregated cancer groups of 
“all cancers combined” and “head and neck cancers”, K 
also included cancer site.

The expected number of deaths due to any cause, µitk , is 
then modelled using the link function,

where d∗itk is the expected number of deaths due to causes 
other than the cancer of interest, yitk is an offset param-
eter for person-time at risk, αt is a year-specific inter-
cept, x1,itk , . . . , xK ,itK  are indicator variables relating to 

(2)

Si|S\i ∼ N

(

ρ
∑

j wijSj

ρ
∑

j wij + 1− ρ
,

σ 2
S

ρ
∑

j wij + 1− ρ

)

β0 ∼ N
(

0, 105
)

σ 2
S ∼ IG(1, 0.01)

ρ ∼ Uniform(0, 1).

ditk ∼ Poisson(µitk)

log
(

µitk − d∗itk
)

= log
(

yitk
)

+ αt + β1x1,itk

+ · · · + βK xK ,itk + Si
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the age–sex-site strata. The spatial random effect, Si , is 
modelled by the Leroux prior, Eq.  (2), as it was for the 
incidence model, except the variance σ 2

S  was assigned a 
half-Normal prior

instead of an inverse Gamma distribution, where the 
indicator function IIII(0,∞) = 1 if 0 < σ 2

S  . The priors for 
the intercept, regression coefficients, and spatial smooth-
ing parameter ρ were assigned weakly informative priors, 
namely,

The rationale for the choices of these priors is 
explained in further detail below (see “Sensitivity analy-
ses”) The key output from this model and reported in 
the Atlas is the EHR, given by exp (Si).

Uncertainty and  posterior probability differences The 
statistical models not only smooth the estimates spa-
tially so as to provide more realistic estimates of the 
cancer burden in Australia, but they also reduce the 
uncertainty around these estimates. This is especially 
true when the observed cases are zero, effectively yield-
ing an observed SIR, i.e. yi/Ei , with unbounded uncer-
tainty about the true value (keeping in mind that the 
residential population is at least 5, and that the SIR is 
modelled on the log-scale). This is true for the EHR too, 
at least conceptually. Presenting the uncertainty in the 
Atlas is important since similar point estimates with dif-
ferent levels of uncertainty can lead to different infer-
ences.

In the Atlas, two different aspects of uncertainty are 
examined. The first aspect is the precision of the pos-
terior point estimates of incidence and relative sur-
vival, which is quantified using credible intervals (CrIs), 
specifically 60% and 80% CrIs. Providing two credible 
interval widths gives greater information, and 80% is 
recognised as an appropriate choice for Bayesian mod-
els [42].

The second aspect relates to the probability that an esti-
mate is different from the Australian average, taking into 
account its uncertainty. The posterior probability that the 
estimate in the ith area is greater than 1 is given by

where A(m)
i  is the mth MCMC estimate (SIR or EHR) 

for the ith area. By symmetry, the probability of the ith 
area’s estimate being less than 1 is PPi,low = 1− PPi,high . 

σ 2
S ∼ N (0, 5)II(0,∞)

αt ∼ N (0, 1000)
βk ∼ N (0, 1000) for k = 1, . . . ,K

ρ ∼ Uniform(0, 1).

PPi,high =
1

M

M
∑

m=1

II
(

A
(m)
i > 1

)

Therefore, the confidence that the estimate is substan-
tively different to 1 is given by 

∣

∣PPi,high − PPi,low
∣

∣ which 
is equivalent to the scaled probability 2

∣

∣PPi,high − 0.5
∣

∣ , 
referred to as the difference in posterior probabilities 
(DPP).

Computation
An increasing range of algorithms is available for spa-
tial models. Popular examples include MCMC simula-
tion [43] and approximations such as integrated nested 
Laplace approximation (INLA) [44]. For the Atlas, we 
chose an MCMC approach to estimate the posterior 
distributions because it is easier to quantify the uncer-
tainty of the posterior estimates compared to alternative 
approaches like INLA. This grants practical advantages 
in estimating comparative statistics and visualising the 
uncertainty as discussed below. The incidence models 
were implemented in R [45] using the CARBayes package 
v5.0 [46] while the relative survival models were imple-
mented in WinBUGS [47] interfaced with R using the 
R2WinBUGS package [48].

For both incidence and relative survival models, the 
MCMC chains had a burn-in of 50,000 followed by an 
additional 100,000 iterations, keeping every 10th itera-
tion to reduce dependence between samples, resulting in 
a posterior sample size of 10,000. Convergence of these 
chains was assessed by visual inspection of trace and 
density plots for selected parameters and areas (Fig.  1), 
and more formally using the Geweke diagnostic test [49]. 
Areas with a Geweke p-value < 0.01 were flagged to be 
examined visually for evidence of convergence. These 
tests indicated that the burn-in was sufficient.

Sensitivity analyses
The priors for the incidence model correspond to the 
default priors for those parameters in CARBayes. The 
same priors were initially used for the regression coef-
ficients and spatial smoothing parameter in the relative 
survival model, but subsequently made less vague due to 
convergence issues.

Moreover, a sensitivity analysis was conducted to 
determine how influential the priors were on the poste-
rior estimates. Our analysis revealed that the estimates 
were insensitive to the prior choices, except for the prior 
on the variance of the spatial random effects, σ 2

S  , for the 
relative survival model which tended to be more influen-
tial when the data were more sparse (i.e. for rarer can-
cers). For the incidence models, the sensitivity analyses 
for σ 2

S  revealed that the estimates were fairly robust to 
this prior choice.

Over 50 different prior specifications were considered 
for σ 2

S  in the relative survival model, including gamma, 
inverse gamma, and half-Normal distributions with 
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different parameter values. Notable examples include the 
IG(1, 0.01) prior for comparison to the incidence model, 
and half-Normal priors corresponding to Normal pri-
ors with variances of 3, 5, 7.5, and 10 each truncated at 
zero. The inverse gamma prior was too vague, leading to 
under-smoothing, as was the half-Normal prior with a 
variance of 10. The other three half-Normal priors gave 
reasonable results, showing slight variations in the degree 
of smoothing, so the N (0, 5)II(0,∞) prior was chosen as 
a compromise between conservative estimates and esti-
mates which will show genuine differences between 
areas.

Level of evidence for spatial variation
This was assessed using Tango’s Maximised Excess 
Events Test (MEET) global clustering test [50], which 
has been shown to perform well across a variety of 
datasets [51]. The input data required for this test is 
the modelled counts (i.e. from the model results, the 

number of diagnoses or excess deaths per area) and the 
expected counts (as input into the Bayesian model). As 
it is expected to consider up to half the total area, our 
maximum distance of examination was 2000  km. The 
p-value from Tango’s MEET was divided into four cat-
egories, consistent with previous analyses [52], being 
strong (p-value < 0.01), moderate (p-value 0.01 to < 0.05), 
weak (p-value 0.05 to < 0.10) and none (p-value 0.10+). 
Tango’s MEET uses Monte Carlo methods, so to help 
ensure our categorisation was appropriate, we calculated 
Tango’s MEET three times, reporting only the most con-
servative category. Only one cancer and sex combination 
had different categories for diagnoses, and four for excess 
deaths. If there is one bar or less for the level of evidence, 
this indicates that overall there is no meaningful evi-
dence that the estimate for this cancer type and sex var-
ies across the country. There may still be some individual 
areas that differ from the national average, but given the 

Fig. 1 Example trace and density plots used to assess convergence of the MCMC chains for the log-SIR for two selected SA2s: a trace plot and 
b density plot for a model run on simulated data showing an example of lack of convergence; and c trace plot and d density plot for the Leroux 
incidence model for one selected cancer and SA2, showing convergence of the estimates used in the Atlas
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lack of evidence for overall variation, these individual dif-
ferences should be interpreted with greater caution.

Visualisation
The Atlas consists of several visual components. The 
main component is the map of SA2s shaded according to 
point estimates of the SIR/EHR. Also included are visu-
alisations which clarify the uncertainty around those esti-
mates and whether they represent real differences to the 
Australian average, and visualisations to better illustrate 
spatial patterns from a national perspective. At the start 
of the Atlas development, we initiated an independent 
scoping process to obtain, among other things, a consen-
sus about the key users for the Atlas, and then combined 
these into four target groups—the general public, policy 
makers, scientific researchers and health practitioners. 
When designing the presentation of the results from the 
statistical analysis in the Atlas, consideration was given 
to why each group would use the atlas and their skill lev-
els. Feedback from people within these user groups was 
obtained during the development of the Atlas through 
focus groups and stakeholder workshops.

Maps
For each SA2, the models generate a posterior distribu-
tion each of the unknown parameters, including the 
two main quantities of interest, the SIRi = exp (θi) and 
EHRi = exp (Si) . To avoid any undue influence from out-
liers, the median of the 10,000 monitored MCMC itera-
tions is used in the maps.

Colour schemes The estimates SIRi and EHRi for a given 
area were intended to be interpreted in relation to the 
Australian average, which by construction, has an SIR 
and EHR of 1. To facilitate this interpretation at a national 
level, so that the spatial patterns of cancer, if any exist, are 
easily observable on the Atlas maps, the estimates were 
mapped according to a diverging colour gradient where 
yellow represents the Australian average, darker shades 
of orange/red indicate SA2s with an estimate above the 
Australian average (higher than average risk), and shades 
of blue indicate SA2s with an estimate below the Austral-
ian average (lower than average risk). Both SIRs and EHRs 
were mapped to the same spectrum of colours to facili-
tate comparison of spatial patterns between incidence 
and survival estimates. The colour gradients were linear 
on the log scale, with the darkest red reflecting an SIR of 
1.5 (a 50% higher risk of diagnosis or death within 5 years 
than the average) or greater, and dark blue beginning at 
the inverse point (≈ 0.67). In making the colour selection, 
we considered the needs of people with various forms of 
colour blindness. A Colour Blindness Simulator (https ://
www.color -blind ness.com/cobli s-color -blind ness-simul 

ator/) provided substantial evidence that the chosen col-
our scheme was still interpretable by most forms of colour 
blindness, apart from monochromatism.

Transparency layer So that imprecise estimates do not 
give the impression of important differences, a second 
layer with varying degrees of opacity was also developed 
and displayed (Fig.  2). This has the pale-yellow colour 
of the Australian average in increasing opacity (0% if an 
estimate has a DPP of 1, 100% if an estimate has a DPP 
of 0), so that estimates with very high uncertainty were 
less visually distinguishable from the Australian average, 
regardless of their median values.

Graphs
Summary plots for  large regions The nationwide pat-
terns can be difficult to visualise geographically due to 
small SA2s, especially in urban areas, which are not visi-
ble without zooming in. To overcome this, summary plots 
showing the distribution of SA2-specific estimates were 
developed so that all of Australia could be represented, 
either in its entirety (quintiles of area-based socioeco-
nomic groups using the Index of Relative Socio-economic 
Advantage and Disadvantage [53], remoteness areas (cat-
egories of the physical distance of a location from the 
nearest areas of concentrated urban development with 
populations of 200 people or more) [54], or state and ter-
ritory boundaries), or focused on regions which were dif-
ficult to see on the map (greater capital city areas [55]). An 
example is shown in Fig. 3.

V‑plots A V-plot (Fig. 4) was developed as a new method 
for combing two pieces of information, namely the area-
specific SIR/EHR estimates and the probability that these 
estimates are different from the Australian average. The 
x-axis compares the posterior median SIR/EHR of each 
area to the Australian average, while the y-axis is the pos-
terior probability that the true incidence/relative survival 
for an area is different from the Australian average; this 
is given by the DPP. Estimates near the top of the V-plot 
are likely to reflect a real difference from the Australian 
average, while estimates near the bottom of the V-plot are 
unlikely to be a real difference.

Wave plots The precision around a posterior estimate 
of the SIR (reflected by the 60% and 80% CrIs), was sum-
marised visually by a plot of the empirical density for the 
logarithm of the SIR, where the labels were adjusted to 
reflect the scale of the SIR (Fig. 4). Similarly for the EHR. 
The representation on the log-scale addresses the prob-
lems associated with densities for ratio scale parameters, 
most notably the apparent differences in the area under 

https://www.color-blindness.com/coblis-color-blindness-simulator/
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://www.color-blindness.com/coblis-color-blindness-simulator/
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the curve resulting from the non-linear intervals. Since 
these densities are not true densities, but are analogous 
in their interpretation, we refer to them as “wave plots”.

Results
The results of the statistical model and visualisation 
development were published through the release of the 
Australian Cancer Atlas (https ://atlas .cance r.org.au) in 
September, 2018. The Australian Cancer Atlas provides 
the first freely available, digital, interactive picture of 
cancer incidence and survival at the small geographi-
cal level across Australia with a focus on incorporating 
uncertainty, while also providing the tools necessary for 

Fig. 2 Partial map of liver cancer incidence for females with a transparency overlay disabled, and b transparency overlay enabled (default option)

Fig. 3 Example of the summary plots for large regions, showing liver cancer incidence for females by SA2 as a a percentage of SA2-specific 
estimates, and b a distribution (boxplot) of SA2-specific estimates

Fig. 4 Example of the V-plot and wave plot showing liver cancer 
incidence for males for two selected SA2s

https://atlas.cancer.org.au


Page 10 of 12Duncan et al. Int J Health Geogr           (2019) 18:21 

accurate estimation and appropriate interpretation and 
decision making. The main user interface of the Atlas is 
illustrated in Fig. 5.

Discussion
The Australian Cancer Atlas is the first comprehensive, 
interactive digital cancer atlas based on small areas and 
utilising spatial smoothing to describe geographical pat-
terns of cancer incidence and survival across Australia. 
One of the key objectives of the Atlas was to motivate 
new research to gain a better understanding of why geo-
graphical variation exists. Its success will be measured in 
part by how widely the Australian Cancer Atlas is used by 
key stakeholders, including members of the community, 
researchers, clinicians, and government, both as a source 
of information and to guide research and inform decision 
making.

Towards this aim, we plan an ongoing program of 
development and research. Future versions of the Atlas 
are planned to incorporate information about how geo-
graphical patterns have changed over time, new indi-
cators such as cancer screening, diagnostic tests, and 
cancer treatment, and alternative visualisations such as 
cartograms which alleviate overemphasis of spatial pat-
terns exhibited by large but lesser populated areas.

It is also hoped that the Atlas will provide motivation 
and opportunity for a better understanding of why geo-
graphical variation exists for each type of cancer. These 
investigations will need to consider in more detail the 
characteristics of people living within areas, the stage 
and other clinical characteristics of the cancer, treat-
ment patterns, and the distribution of known cancer risk 
factors and cancer screening behaviour. They will also 

Fig. 5 Example view of the Australian Cancer Atlas showing the geographic variation of prostate cancer incidence
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incorporate ecological modelling to identify associations 
between key area-level factors and geographical patterns 
such as remoteness, area disadvantage and access to ser-
vices. A multidisciplinary approach will be crucial to 
meet these goals, and it is hoped that the Atlas provides 
motivation and opportunity for different research groups 
to collaborate and combine existing data at the small area 
level.

Conclusions
Since its release in September 2018, the Australian Can-
cer Atlas has brought new insights about geographical 
cancer patterns across Australia. It has already motivated 
new collaborations within Australia and internationally 
to better quantify and understand the geographical pat-
terns of cancer indicators, and will continue to form the 
foundation of an ongoing research program incorporat-
ing innovative statistical models and visualisations to 
better quantify the extent and characteristics of the geo-
graphical variation, and the reasons why it exists.
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