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Abstract 

Background: The utility of being able to spatially analyze health care data in near-real time is a growing need. How-
ever, this potential is often limited by the level of in-house geospatial expertise. One solution is to form collaborative 
partnerships between the health and geoscience sectors. A challenge in achieving this is how to share data outside of 
a host institution’s protection protocols without violating patient confidentiality, and while still maintaining locational 
geographic integrity. Geomasking techniques have been previously championed as a solution, though these still 
largely remain an unavailable option to institutions with limited geospatial expertise. This paper elaborates on the 
design, implementation, and testing of a new geomasking tool Privy, which is designed to be a simple yet efficient 
mechanism for health practitioners to share health data with geospatial scientists while maintaining an acceptable 
level of confidentiality. The basic premise of Privy is to move the important coordinates to a different geography, per-
form the analysis, and then return the resulting hotspot outputs to the original landscape.

Results: We show that by transporting coordinates through a combination of random translations and rotations, 
Privy is able to preserve location connectivity among spatial point data. Our experiments with typical analytical sce-
narios including spatial point pattern analysis and density analysis shows that, along with protecting spatial privacy, 
Privy maintains the spatial integrity of data which reduces information loss created due to data augmentation.

Conclusion: The results from this study suggests that along with developing new mathematical techniques to aug-
ment geospatial health data for preserving confidentiality, simple yet efficient software solutions can be developed 
to enable collaborative research among custodians of medical and health data records and GIS experts. We have 
achieved this by developing Privy, a tool which is already being used in real-world situations to address the spatial 
confidentiality dilemma.
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Introduction
The following scenario is an all-too-common problem 
faced in the health care and delivery sector. A hospital 
emergency response manager, basically a doctor oversee-
ing all paramedic call outs, wants a spatial analysis of all 

trips responding to an asthma exacerbation. The analy-
sis should include location, times, subject (for example 
children) and medication given (an indication of sever-
ity). To perform a spatial hotspot analysis of these data, 
require geographic information system (GIS) skills the 
hospital doesn’t possess. Bringing in a spatial science col-
laborator would require Institutional Review Board (IRB) 
approval, and possibly the need for the analysis to occur 
within a secure onsite data environment. While having 
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such safeguards is important, the sacrifice is the time it 
takes to have the hospital IRB approve the study, and the 
impediment of geographic distance if the collaborator has 
to perform the analysis on site. The solution we present 
in this paper is a direct result of this scenario, and many 
other situations where a health-geospatial collaboration 
is needed, often in near-real time, and no easy spatial 
confidentiality solution exists. While there has been con-
siderable attention to various aspects of the spatial confi-
dentiality problem, many involving elegant and powerful 
solutions, here we focus on utility and practicality.

A spatial appreciation continues to grow within the 
health sector, ranging from the addition of geographic 
locations in research to needs assessments (e.g., Health 
Impact Assessments, Community Health Improvement 
Plans, etc.), to spatially guided precision medicine [14]. 
Common requests between clinicians and research-
ers include tasks such as mapping patient locations, or 
finding distances between cases and the nearest clinic. 
Yet even though basic “map making” has become more 
ubiquitous, using either a geographic information sys-
tem (GIS) or Google Earth [9, 11], these simple tasks still 
remain logistically challenging for many in the health 
profession, especially in terms of satisfying IRB pro-
tocols. Even more challenging is the ability to conduct 
more sophisticated spatial analysis [16, 26] where both 
implementation or a correct interpretation of the output 
is beyond many without a geoscience training [5]. For 
many health institutions, the in-house geospatial exper-
tise for performing advanced techniques such as spatial 
clustering or exploratory spatial data analysis (ESDA) 
is limited [18]. Therefore, while a county health depart-
ment may see the benefit of creating fine scale maps of 
opioid overdoses [48] or a children’s hospital might wish 
to understand its neighborhood child injury risk pattern 
[43] by overlaying hotspots onto built environment sur-
veys, these tasks often remain unachievable due to a lack 
of geospatial skills [18]. While collaborations are pos-
sible with IRB oversight, the time taken to obtain such 
permission often takes considerable time. One solution 
is a collaborative partnership that could mine the ever 
expanding data, for example electronic medical records 
[40] if personal identifiers and precise spatial locations 
can be removed, while not impacting the ability for anal-
ysis. The demand for such a solution would be high as the 
utility would be broad, including disease mapping and 
analysis, health risk surveillance [8], outbreak response 
[19], healthcare delivery studies [20], identifying sub-
neighborhood level health patterns [24], and clinical 
support.

Concern regarding spatial privacy and confidential-
ity [3, 10, 22], especially with regards health data [46] is 

justifiable. Arguably, the confidentiality conversation can 
be thought of in two ways; “in-house” map making where 
a “mapper” has access to data but through cartography 
reveals locations that can be re-engineered to an unac-
ceptably precise level, and secondly, the ability to share 
data “out-of-house” to allow for expert analysis even 
though the mapping team is not allowed access to confi-
dential records. These two problems are linked, because 
violations of inappropriate cartography leading to reen-
gineering risk could occur either by the institution, or the 
out-of-house collaborator. Previous research on spatial 
privacy and spatial data re-engineering have revealed the 
severity of this problem using re-engineering examples. 
Curtis et al. [22], were able to identify mortality locations 
in the real world from published maps with only limited 
geographic features and boundaries through digitally 
scanning, geo-referencing, and digitizing before upload-
ing the resulting coordinates into a GPS unit. Similarly, 
Brownstein et  al. [13] used reverse geocoding and geo-
referencing techniques to identify patient locations from 
a prototypical map of randomly selected patients. They 
were able to successfully identify 26%, 51.6%, 70.7%, and 
93% of addresses within one, five, ten and twenty build-
ings. Further, they extended the results to create an unsu-
pervised learning algorithm [12] that could automatically 
classify patient location with an accuracy of 79%, reveal-
ing the vulnerability of point maps. At a broader scale, 
Kounadi and Leitner [34] found that over an eight-year 
period, more than 68,000 home addresses were made 
vulnerable from a set of forty-one academic articles. 
Worryingly, their study revealed that at the time of writ-
ing that this risk remained an ongoing problem in aca-
demically published maps. It is therefore understandable 
that an IRB, while more traditionally experienced with 
health record protection, should consider the vulnerabili-
ties of the spatial dimension. For some, the solution is for 
all work to be carried out in a secure data environment. 
While this solves one problem, it geographically limits 
the likelihood of collaboration.

Of further concern is that the confidentiality problem 
is becoming more complex, especially with regards the 
recent proliferation of geo-spatially tagged social data. 
Much of this data from sources such as sensors, check-
ins, trip records, and social media can be spatially or 
aspatially linked to health records, which leads to 
potential spatial privacy vulnerabilities. The spatial and 
aspatial linking of geo-spatial social and health data can 
be done with minimal GIS skills. With mapping API’s 
such as Google maps becoming more and more user-
friendly, a practitioner unaware about spatial privacy 
can easily map health records that have been linked to 
geo-spatial social data.
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Geoscientists have tackled confidentiality challenges 
through three main strategies including anonymity, spa-
tial privacy policies, and obfuscation. Among the three 
strategies spatial data obfuscation or geomasking has 
generated considerable attention. Novel masking tech-
niques were developed which could be broadly catego-
rized into affine, aggregation, and random perturbation 
based on the obfuscation strategy employed [7]. While 
many of these approaches have merit, there remains a 
disconnect between the concept and real-world utility. 
Simply put, spatial data sharing, the creation of “safe” 
maps, and the preservation of confidentiality remains a 
confusing and often unobtainable task for many health 
organizations. As a result of this shortfall, and due to 
facing these types of problems with a local health care 
system, we conceptualized and then built Privy, a util-
ity that can be immediately applied by health organiza-
tions based on the principles of isomasks [7]. Geocoded 
health data, such as the addresses of cancer patients, 
are masked in such a way that the recipient researcher 
has no information about the original coordinate loca-
tions. Yet the spatial configuration of the coordinates is 
maintained, which is vital for point-based hotspot analy-
ses and even regression approaches (using the attribute 
columns of the health record as dependent variables). 
After the spatial science collaborator has performed the 
analysis, the resulting output can be shared back with the 
health organization, and can further be re-transformed 
using a unique set of codes stored from the initial trans-
formation, which allow for the map of results to be over-
laid onto the “real” geography. The data providers and the 
researchers can then discuss the results simultaneously, 
both viewing the same map output, though with a differ-
ent geographic underlay.

This paper begins by providing a background on some 
of the strategies that have been adopted to preserve spa-
tial data confidentiality with a particular focus on geo-
masking. Next, we discuss the mathematical formulation 
of point data transformations and re-transformations, 
and the workflow and technical implementation for 
Privy using some analytical and statistical experiments 
for illustration. Finally, the paper discusses some of the 
limitations and shortcomings of Privy along with a future 
direction for this type of spatial data confidentiality 
research.

Background
Privacy policies define restrictions for the release of 
individual location data to third parties [28]. For exam-
ple, the Health Insurance Portability and Accountabil-
ity Act (HIPPA) requires health data that are visualized 
by zip code should have a denominator population of at 
least 20,000. Besides federal laws such as HIPPA, there 

are human subject protection procedures implemented 
by IRBs. Even though IRBs review and monitor the col-
lection and use of personally identifiable information, 
uncertainty still exists within these bodies regarding what 
are acceptable risks of disclosure with respect to maps 
and other spatial outputs [10].

As previously mentioned, the three main spatial pri-
vacy preserving strategies include, anonymization, 
policy-based changes, and data obfuscation or geomask-
ing [6]. Anonymity is mainly concerned with the disas-
sociation of information about an individual, including 
the location of the individual [25]. One of the com-
monly used metrics for anonymity is k-anonymity, which 
is defined as the imprecision in location information 
required for making an individual indistinguishable from 
k other individuals [27, 29, 49]. In their seminal paper on 
k-anonymity, Samarati and Sweeney [44] defined a data-
set to be k-anonymous when a combination of values of 
quasi-identifiers can be indistinctly matched to at least 
k records. Simply put, a dataset is k-anonymous when 
every record in the dataset is indistinguishable from k−1 
other records. Even though k-anonymity was initially 
developed to improve confidentiality in typical non-spa-
tial databases, its increasing relevance in spatial data pri-
vacy led to development of new methodologies such as 
spatial k-anonymity [15]. Spatial k-anonymity works by 
utilizing the underlying population density information 
to displace confidential point data. Even though spatial 
k-anonymity has been championed as the most accurate 
privacy protection measure, its dependency on uncertain 
and inaccurate data sources such as population density 
data, makes its practical implementation costly and chal-
lenging [53].

Among all spatial privacy-preserving methodologies the 
most commonly used and studied is spatial data obfusca-
tion or geomasking. Obfuscation can be considered as a 
combination of statistical and epidemiological techniques 
to mask location information in a way that can still ena-
ble meaningful analysis [7, 25, 52]. The two main goals of 
spatial data obfuscation are to achieve a balance between 
personal location information protection, and to extract 
maximum information from fine scale spatial data [25]. 
Unfortunately, these two goals are inversely related, i.e. 
the finer the spatial location involved (often preferred 
for intervention-style analysis), the greater the risk of 
re-engineering [36]. Many obfuscation methods such as 
geomasks [1, 7, 25, 30, 45, 51, 54], grid masks [23], and 
software agents [32] have been suggested to achieve a bal-
ance between confidentiality and data utility.

Geomasks can be generally categorized into affine, 
aggregation, and random perturbation. Affine geomasks 
(commonly called isomasks) utilize geometrical trans-
lation, rotation, or a combination of both for relocating 
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spatial points. The transformations could be global 
(where all points are equally transformed), or local 
(transformations are applied to a small area), based on 
the scale of implementation. The attractive property of 
affine transformation is its ability to preserve the spatial 
structure of the data. This could be particularly advanta-
geous for the subsequent use of spatial analysis or visual 
exploratory techniques such as clustering. With random 
perturbation each point in a dataset is translocated by a 
random distance and angle. While random perturbation 
is theoretically safe compared to affine transformation, 
the information loss due to the change in spatial struc-
ture is much higher, which limits the ability to use spatial 
and exploratory analysis. Geomasks can also use a vari-
ant of a random perturbation, for example Leitner and 
Curtis [37] developed the “flipping methodology” which 
inverts original locations about a horizontal and vertical 
axis of the map, while Curtis et al. [23] developed a grid-
based approach implementing a combination of rand-
omization and Monte-Carlo simulation to assign masked 
point locations. Clarke [17], in his work on developing 
a multiscale masking method for spatial point data, uti-
lized digit switching to mask coordinates. In this method, 
the coordinates are first converted to a Military Grid 
Reference System (MGRS) which permits encryption at 
five spatial levels of precision, equivalent to 1, 10, 100, 
1000, and 10,000 m. Finally, donut masking [30] extends 
random perturbation masks by ensuring a user-defined 
minimum level of geo-privacy. The randomly perturbed 
points are ensured to be outside of a buffer distance from 
the original location. For areal aggregation masks, the 
points are assigned to administrative boundaries such as 
zip codes, census tracts, and counties and only the aggre-
gated polygons are used for further analysis. Even though 
such aggregations can preserve spatial confidentiality, the 
information loss is high and often leads to issues such as 
the ecological fallacy. The verified neighbor mask [41] 
utilizes a pool of neighbors for relocating or displacing 
a spatial point, with all neighbors having an equal prob-
ability of becoming the destination location. The advan-
tage of this method is its realistic placement of relocated 
points, though it is less useful for rural areas. Another 
recently developed geographic mask is the adaptive areal 
elimination mask [35], which uses an adaptive filtering 
technique with aggregated data (for example using cen-
sus enumerations) to make sure that a minimum popu-
lation level is reached, before performing the random 
relocation.

The recent developments in Artificial Intelligence (AI), 
Internet of Things (IoT), and blockchain have spurred a 
new wave of interest among researchers to develop novel 
approaches for preserving confidentiality (both spatial 
and aspatial). As an example, blockchain technology, 

which uses encryption and data storage in a decentral-
ized and distributed fashion could be an ideal framework 
for sharing health data [33]. Apart from storing data in 
a secure way using encryption, blockchain can be used 
to create instructions on data ownership and data access 
(smart contracts [38]) which is particularly useful for 
tasks such as health supply chain management, data shar-
ing, and consent for clinical trials [33]. One of the recent 
developments in the area of geospatially-enabled block-
chain, FOAM [2], utilizes a crypto-spatial coordinate sys-
tem for preserving geo-spatial data. FOAM blockchain, 
apart from validating specific time of an entry, validates 
the associated proof of location for the entry. Geospa-
tial cryptography [31], which is similar to crypto-spatial 
coordinate system, utilizes homomorphic cryptography 
which is defined as a procedure that encrypts data in such 
a fashion that mathematical operations can be performed 
on the data without decryption, to securely transfer and 
analyze geospatial data. Even though nuanced methodol-
ogies such as geospatial blockchains are progressing con-
sistently, some of the challenges associated with it such 
as interoperability, blockchain security, and transparency, 
still require further attention before full implementation 
[33]. Software agents provide another methodology for 
geospatial privacy preservation. This approach is based 
on controlling access to original individual records with-
out releasing personally identifiable details [32]. Apart 
from ameliorating the deficiencies presented by releas-
ing spatially aggregated data, the risk of re-identification 
is much lower with software agents when compared to 
geo-masked data. Though very promising, the use of soft-
ware agents to handle confidential health datasets is still 
at its infancy due to the challenges related to establish-
ing highly secure computer infrastructure. The recent 
advances in cyberinfrastructure offer promise in the 
revamping of software agents, though yet again, these 
methods do not offer immediate solutions to a health 
care organization requiring spatial expertise now.

Mathematical formulation
Point data transformation and re‑transformation
The Privy approach, which belongs to the family of iso-
masks [7], involves a random spatial translation and 
rotation of an original spatial point dataset. A distance 
offset is generated from a random number, which is later 
reused to re-transform the obfuscated data back to the 
original locations. More specifically, the transformation 
of the point data involves two steps, a random spatial 
translation and rotation. For the translation step, an off-
set is defined to ensure that the newly transformed points 
exceed a minimum distance from the original point 
set. This procedure is closely related to donut mask-
ing [30], where an inner radius is defined to prevent the 
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transformed points from being accidentally too close to 
the original points. Suppose the offset intervals are {X1, 
X2} for x coordinates and {Y1, Y2} for y coordinates, then 
new coordinates for a location (x, y) are displaced at 
least by (X1–x) along the ordinate and (Y1–y) along the 
abscissa. The distance for translation from the original 
location (x, y) is made random by generating a displace-
ment value obtained by multiplying the offset intervals 
(X2–X1) and (Y2–Y1), with a random number (r) (Eq. (1)). 
As translation maintains the original pattern of the spa-
tial data, the obfuscated points could be potentially vul-
nerable to identification. In order to tackle this challenge, 
we perform a random rotation on the translated coordi-
nates. Rotation of coordinates is performed by a matrix 
multiplication of translated coordinates with a rotation 
matrix (Fig.  1) which maintains the structural equiva-
lence between the real and transformed coordinates and 
is essential when re-transforming surfaces generated 
from the obfuscated spatial data. The random number 
generated for the translation phase is saved to a local 
database as a < key,value > pair, with the key being a user 
provided parameter and the random number being the 
matched corresponding value. Along with the random 
number, the geographical extent for the transformed 
points are also saved into the database for a raster re-
transformation procedure.

(1)
X = x + (r ∗ (X2 − X1))+ X1

Y = y+ (r ∗ (Y2 − Y1))+ Y1

The re-transformation procedure utilizes the random 
number saved to the local database. First, an X-degree 
anti-clockwise re-rotation occurs which essentially brings 
the transformed coordinates into the same orientation as 
that of the real data. Then the user-supplied key is uti-
lized to retrieve the random number used for the transla-
tion, resulting in all coordinates being re-transformed to 
the original location (Fig. 2) (Eq. (2)).

Raster re‑transformation
While the successful transformation and re-transforma-
tion of a point (patient address) data set is a useful aca-
demic exercise, the reality behind wanting to perform such 
a procedure is that outgoing point data will be analyzed by 
a third party, with (probably) a continuous surface output, 
most likely a raster image, being returned. For re-transfor-
mation of the raster generated from the obfuscated points, 
the bottom right coordinate of the raster is again rotated 
X-degree anti-clockwise. This rotated coordinate is the 
unadjusted top left coordinate for the re-transformed ras-
ter (Xleft

′′′, Ytop
′′′). A X-degree matrix rotation is then performed 

to accommodate the data changes due to the orientation of 
the raster. The re-translation procedure (Eq. (2)) is applied 
to the unadjusted top left coordinate (Xleft

′′′, Ytop
′′′) of the re-

transformed raster using the random number used in the 
obfuscation (again retrieved from the local database). Even 

(2)
x = X − (r ∗ (X2 − X1))− X1

y = Y − (r ∗ (Y2 − Y1))− Y1

Fig. 1 Obfuscation by point data translation and rotation. An offset generated from a random number is used for the translation and the rotation is 
performed using a rotation matrix. The grey dot indicates a point that has been transformed in space

Fig. 2 Re-transformation of obfuscated point data through rotation and re-translation. The point data are rotated in space using the rotation matrix 
and re-translation is performed using the offset generated from the random number. The grey dot indicates a point that has been re-transformed in 
space
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though the raster has been transformed into the original 
space, an alignment issue due to the rotation of points 
needs to be addressed (Fig.  3). The spatial extent of the 
obfuscated points (Xleft

′ , Ybottom
′ , Xright

′ , Ytop
′ ) retrieved from 

the local database and the spatial extent of the raster cre-
ated from the obfuscated points (Xleft

′′ , Ybottom
′′ , Xright

′′ , Ytop
′′ ) 

can be used to calculate the adjusted top left coordinate 
for the re-transformed raster (Xleft , Ytop). At first, the dif-
ference in spatial extent for the top, bottom, left, and right 
of the obfuscated point data to the corresponding raster 
generated from the obfuscated data are calculated (xldiff , 
xrdiff , ytdiff , ybdiff) (Eq. (3)).

The differences for the top and bottom as well as the 
left and right are added to calculate the adjusted values 
(xadj, yadj) (Eq. (4)).

Based on Eq.  (5), the final adjusted top left coordi-
nate for the re-transformed raster (Xleft, Ytop) can be 
calculated.

Workflow and technical implementation
Unlike with other academic approaches to obfuscate 
data, Privy was conceptualized while simultaneously 
being developed as a ubiquitous tool. This is impor-
tant to emphasize in that the driving factor behind 

(3)

xldiff = X
′

left − X
′′

left

xrdiff = X
′

right − X
′′

right

ytdiff = Y
′

top − Y
′′

top

ybdiff = Y
′

bottom − Y
′′

bottom

(4)
xadj = xldiff + xrdiff

yadj = ytdiff + ybdiff

(5)

Xleft = X
′′′

left − xadj

Ytop =

{

Y
′′′

top + yadj , yadj < 0

Y
′′′

top − yadj , yadj ≥ 0

developing Privy was that it could immediately serve as 
a health organization/spatial science collaborating frame-
work. To achieve this goal, a simple user-friendly inter-
face was developed using Html5, and JavaScript (Fig. 4), 
while Google Maps API, which is a JavaScript based 
map framework from Google, was used to visualize the 
obfuscated data. All the algorithms for obfuscation and 
re-transformation were written in Python, and complex 
operations such as the matrix rotation was done utiliz-
ing the mathematical library Numpy. SQLite3 was used 
for saving parameters such as the random values and the 
extent of the transformed coordinates. PyQT, which is a 
Python framework with an in-built browser that could 
support both web components and Python based core 
components was used to connect the web-interface with 
the local database.

As a first step in the coordinate transformation, confi-
dential point data, such as patient addresses are uploaded 
as an ESRI shapefile. These data are then transformed 
as previously described using Privy, with the new data 
also being output as a shapefile. The transformation key 
is stored for use on the eventual re-transformation, and 
the health organization waits for its collaborator to per-
form an analysis and return the output. A re-creation 
of the obfuscation procedure occurs with the returned 
analytical output and both parties can then interpret the 
findings on the same output map, though overlaid on a 
different Geography (Fig. 5).

Experiments
In order to show the utility and effectiveness of Privy 
as a methodological approach that could act as a con-
duit between health data guardians and collaborating 
researchers, a series of experiments were conducted. In 
order to test whether Privy was able to obfuscate and 
correctly re-transform spatial point data, the 1878 yel-
low fever epidemic of New Orleans, Louisiana [21, 24] 
was utilized. This dataset, using mortality locations 
recorded in the Official Report of the Deaths from Yel-
low Fever as Reported by the New Orleans Board of 

Fig. 3 Re-transformation of the raster through rotation and re-translation. The grey dot indicates a point that has been re-transformed in space
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Health (1879), illustrates a more typical health applica-
tion as the age, date of death, and nativity, are linked 
to a residential address. Indeed, it has previously been 
suggested that these data provide an excellent test set 
for confidentiality work as they are at address level, are 
“real” epidemic data, but there is no consequence in 
terms of a real-world reengineering risk [21, 24]. The 
case locations were obfuscated using Privy, and then 
re-transformed back into the original space for com-
parison. In order to test the correctness of the re-trans-
formation procedure, a custom Python script was used 
to calculate the point-by-point distance comparison 

between the original and re-transformed dataset. The 
point data maps (Fig. 6) shows the real location of yel-
low fever deaths (Fig.  6a), the obfuscated locations 
(Fig.  6b), and the re-transformed locations (Fig.  6c) 
respectively. By visual examination alone, we can see 
that the re-transformed locations and the real locations 
are similar. The unique ids for each coordinate are used 
to facilitate a one on one comparison with the real and 
re-transformed data. The output of the point-to-point 
distance calculation for each pair of coordinates is 
zero, which indicates an exact re-transformation of the 
obfuscated spatial dataset (Fig. 6b).

Fig. 4 User interface for Privy 

Fig. 5 Privy workflow for data obfuscation and re-transformation
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To test the impact of obfuscation on the spatial struc-
ture of point data, a set of spatial point pattern anal-
yses were conducted, though for the sake of brevity 
only two experiments are described here. The Average 
Nearest Neighbor, a common clustering technique for 
point data [50] was run on both the real and obfus-
cated yellow fever datasets. Euclidean distance was 
used as the distance relationship between the point 
data. The results reveal clustering (nearest neigh-
bor ratio = 0.621659) with statistical significance (p 
value = 0.00) (Table 1).

For the second experiment, Ripley’s  K function 
[42], a technique used to investigate clustering, was 
applied to both the real and obfuscated yellow fever 
dataset. The results (Table  2) reveal a high level of 
clustering for small distance bands and a subsequent 

reduction in clustering at higher distances. The differ-
ence value for observed (L(d) transform) and expected 
(distance of band itself ) values, Diff, increases up to 
band four (188.6  m), and further decreases till band 
ten (472.15  m). A comparison of transformed values 
and differences for masked and unmasked data reveals 
exact matches for all distance bands.

Fig. 6 a Unmasked yellow fever death data, b obfuscated data, c re-transformed data

Table 1 Average nearest neighbor results for yellow fever 
unmasked and obfuscated data

OMD represents observed mean distance, EMD represents expected mean 
distance and NNR represent nearest neighbor ratio

OMD EMD NNR z‑score p‑value

Real 19.24 30.96 0.62 − 16.23 0.00

Obfuscated 19.24 30.96 0.62 − 16.23 0.00

Table 2 Ripley’s-K function results for  unmasked 
and obfuscated data

L(d) represents transform value and Diff represents the difference between 
the expected and observed value. The subscripts R and O represents real and 
obfuscated results

Distance L(d)R L(d)O DiffR DiffO

47.21 73.24 73.24 26.02 26.02

94.43 124.45 124.45 30.02 30.02

141.64 176.63 176.63 34.99 34.99

188.86 227.46 227.46 38.61 38.60

236.07 273.51 273.51 37.44 37.44

283.29 318.81 318.81 35.52 35.52

330.50 359.59 359.59 29.08 29.08

377.72 398.78 398.78 21.06 21.06

424.93 437.85 437.85 12.91 12.91

472.15 473.88 473.88 1.73 1.73

Fig. 7 KDE surfaces generated from a original yellow fever data, b obfuscated data and c re-transformed raster
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The results of the spatial analysis indicate that Privy 
preserves spatial structure during data obfuscation and 
is able to successfully re-create the original results. To 
further analyse the capabilities of Privy, a set of surface 
generating experiments were conducted. Many of the 
visual exploratory and interpolation techniques in GIS-
cience such as Kernel density estimate (KDE) [47] and 
Inverse distance weighted interpolation (IDW) [39], gen-
erate raster surfaces from a set of spatial points, and as 
such both were utilized here. Initially, the surfaces were 
generated from the original yellow fever data. Then, 
Privy was used to obfuscate the original data and the two 
methods were again applied on the obfuscated data. The 
raster surface generated from the obfuscated data was re-
transformed using Privy. Comparison occurs by spatially 
matching the spatial coordinates of the raster extent, the 
cell size, and total rows and columns. The KDE results for 
the unmasked (Fig.  7a) data raster shows multiple hot-
spots with a major focus in the north eastern sector. The 
obfuscated data raster (Fig. 7b) shows an inverted pattern 
but with similar values in the transformed space. The re-
transformed data raster (Fig. 7c) reveals the same trends 
as in the real data raster (Fig. 7a).

The IDW results for the unmasked data (Fig.  8a) also 
reveals relatively high values for interpolated yellow fever 
in the same location. For the obfuscated data, the IDW 
results (Fig.  8b) indicate an exact inverted pattern of 
the unmasked data (Fig.  8a). The re-transformed raster 
(Fig. 8c) shows the exact same pattern as the raster gen-
erated from the unmasked data (Fig. 8a).

Discussion and conclusions
There is an immediate need for health organizations and 
skilled geospatial researchers to collaborate on various 
health concerns. Simply put, understanding fine scale 
processes in outcomes such as asthma, infant mortality 
or overdoses, can lead to changes in intervention. The 
challenge is how to share data, and perform fine scale 
spatial analyses safely, where there is an extremely limited 

likelihood of a confidentiality violation. While mak-
ing data available at coarser aggregations such as census 
tracts or zip codes might satisfy the creation of health 
atlases or public presentations, intervention strategies 
require finer scale spatial data. Therein lies the spatial-
confidentiality dilemma—the data guardian must balance 
the increased risk of using/releasing fine scale data with 
the potential improvements in health.

While researchers have considered this dilemma con-
ceptually for decades, arguably the debate has shifted as 
health organizations become more spatially literate; more 
clinicians and other health researchers now are aware of 
the power of mapping and how it might advance current 
thinking, especially with regards more effective target-
ing of intervention. In other words, we have moved from 
largely academic discourse to a real-world need. A solu-
tion to bridge the health and spatial research sectors are 
required as many organizations (health departments, 
hospitals) have limited or no GIS expertise. Even if such 
skill lies within a department of an organization, the 
siloed nature of health research treats each unit as though 
they are outsiders. It is almost as hard for a geoscientist 
working in a diabetes unit to offer spatial research help 
to a cancer centre, even within the same hospital. As a 
result only basic mapping, or worse, incorrectly run and 
interpreted spatial analyses often occur. One solution is 
to obfuscate data in such a way that collaborative teams 
can work together, in near real time, without running the 
risk of violating patient confidentiality.

While there have been many eloquent approaches 
to solve this problem, these have largely remained in 
the realm of academia. If a hospital wants to share data 
with a collaborator, there is no widely adopted solution, 
especially one that can be applied with a limited geo-
spatial skillset by a healthcare analyst. In this paper we 
addressed this problem using a three pronged approach; 
design a method that was simple to understand, that was 
powerful in both protecting confidentiality and allows 
for a variety of different analytical approaches, and that 

Fig. 8 IDW surfaces generated from a original yellow fever data, b obfuscated data and c re-transformed raster
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could be applied now, in any health organization with 
just a minimum of spatial data understanding.

We have achieved this with Privy. Our results show 
that the obfuscation technique applied to point level data 
preserves spatial structure, which in turn provides the 
exact same results for masked and real data, achieving 
one of the overarching goals of geomasking [25]. Future 
comparative analyses should incorporate other tech-
niques important to health research, such as SaTScan 
or LISA  [4], though we have no reason to believe these 
results will be any different.

The ability to re-transform surfaces generated using 
obfuscated data to its original location adds further 
potential to this approach. This is important both in 
terms of being able to share output and have a simultane-
ous interpretation between both parties, and even being 
able to share finely aggregated original surfaces without 
concern. Even though KDE continuous surfaces are less 
prone to confidentiality issues, bullseye effects in remote 
areas still run an unacceptable risk of re-engineering [10]. 
The obfuscation of the raster surface as displayed in this 
paper provides a solution to this vulnerability of isolation.

While this approach is available now, some limita-
tions need to be addressed. Firstly, the current approach 
requires address level data to be geocoded, and output 
as a shapefile. While this might be a limitation for some 
organizations, some electronic medical record systems 
now offer geocoding as output, and the basic use of a 
GIS’s functionality is becoming more commonplace. 
Even so, for full ubiquitous use, for example with a small 
county health department or hospital, a pre-module that 
provides geocoding services and shapefile creation would 
be a useful evolution.

Secondly, the only data that can be shared has to 
come from the health organization (or a similar unit). 
Publicly available data layers like boundaries, street 
files, or census data cannot be shared as this increases 
the risk of re-engineering. While this may limit the use 
of some techniques, such as regression, more and more 
socioeconomic, behavioral and even environmental 
data are being collected by health organizations. These 
could provide a set of independent variables linked to 
the original patient file as attributes. With these added 
then the comparison of real and obfuscated data based 
on spatial modelling techniques such as ordinary least 
squared regression (OLS) and geographically weighted 
regression (GWR) could be further explored. Indeed, 
one spill over benefit with the availability of tools like 
Privy is a greater incentive for the recording of more 
data inhouse, while making temporal changes (both 
biological and address related) more easily accessi-
ble for spatio-temporal analysis. In future revisions of 
Privy we plan to incorporate secured spatial joins and 

aggregations, which could be particularly useful for 
incorporating external datasets. Along with providing 
aggregated results, It would also be beneficial if Privy 
could automatically identify and warn the user about 
potential vulnerabilities such as a lack of a substantial 
denominator within the analysed data (addressing the 
previously mentioned bulls-eye effects).

Finally, the main vulnerability of the Privy approach 
is if a bad actor has information about one patient, 
then conceptually it is possible that this address could 
be used to re-engineer the rest of the system. While 
this will always be possible, it is unlikely given that the 
required data would have to have the exact input of 
the data being transformed. It is not enough to know 
a birth weight, or a BMI, or a blood lead level count as 
these are likely to be replicated across the data set, and 
for many these also vary with medical visit. Therefore, 
the bad actor would have to have access to the elec-
tronic medical record file of one person, and then be 
able to place that within the transformed and rotated 
data. This is even more unlikely if the geospatial team 
does not know which city the original data come from. 
Finally, the standalone nature of the software and the 
local database, add a further layer of security as the key 
used for masking and re-transformation are only avail-
able with the health organization.

In summary, as custodians of medical and health data 
records often have minimal GIS expertise, it is essential 
to develop simple yet efficient software methodologies to 
help them preserve spatial confidential and at the same 
time enable collaborative research with GIS experts. We 
have achieved this by developing the Privy technique, a 
tool which is already being used in real-world situations 
to address the spatial confidentiality dilemma.
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