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Abstract 

Background: As of 13 July 2020, 12.9 million COVID-19 cases have been reported worldwide. Prior studies have 
demonstrated that local socioeconomic and built environment characteristics may significantly contribute to viral 
transmission and incidence rates, thereby accounting for some of the spatial variation observed. Due to uncertain-
ties, non-linearities, and multiple interaction effects observed in the associations between COVID-19 incidence and 
socioeconomic, infrastructural, and built environment characteristics, we present a structured multimethod approach 
for analysing cross-sectional incidence data within in an Exploratory Spatial Data Analysis (ESDA) framework at the 
NUTS3 (county) scale.

Methods: By sequentially conducting a geospatial analysis, an heuristic geographical interpretation, a Bayes-
ian machine learning analysis, and parameterising a Generalised Additive Model (GAM), we assessed associations 
between incidence rates and 368 independent variables describing geographical patterns, socioeconomic risk factors, 
infrastructure, and features of the build environment. A spatial trend analysis and Local Indicators of Spatial Autocor-
relation were used to characterise the geography of age-adjusted COVID-19 incidence rates across Germany, followed 
by iterative modelling using Bayesian Additive Regression Trees (BART) to identify and measure candidate explanatory 
variables. Partial dependence plots were derived to quantify and contextualise BART model results, followed by the 
parameterisation of a GAM to assess correlations.

Results: A strong south-to-north gradient of COVID-19 incidence was identified, facilitating an empirical classifica-
tion of the study area into two epidemic subregions. All preliminary and final models indicated that location, densi-
ties of the built environment, and socioeconomic variables were important predictors of incidence rates in Germany. 
The top ten predictor variables’ partial dependence exhibited multiple non-linearities in the relationships between 
key predictor variables and COVID-19 incidence rates. The BART, partial dependence, and GAM results indicate that 
the strongest predictors of COVID-19 incidence at the county scale were related to community interconnectedness, 
geographical location, transportation infrastructure, and labour market structure.
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Background
COVID‑19
Since the initial outbreak in late 2019 in Wuhan, China 
[1], the novel coronavirus SARS-CoV-2 has spread to 207 
countries worldwide, causing an estimated 12.9 million 
cases and 569,128 deaths due to coronavirus disease 2019 
(COVID-19), as of 13 of July [2]. In Germany, the first 
case was recorded on 27 of January 2020 [3], in Bavaria. 
Most recently there were 198,963 reported cases and 
9064 deaths in Germany as of 13 of July 2020 [4]. Federal 
social distancing guidelines were nearing peak security 
measures on 28 March 2020, where curfews were being 
implemented independently at the NUTS-3 (county) 
level as early as 20 March [5].

Local person-to-person transmission of the virus is 
attributable to shedding on the nasopharyngeal, turbi-
nate, and oropharyngeal surfaces [6, 7], then transmit-
ted primarily via airborne droplets ejected from the nose 
or mouth [6]. Owing to an estimated average incubation 
period of 5-6 days and ranging up to two weeks [8–11], 
the virus can be transmitted to multiple persons by 
asymptomatic individuals [7]. Up to 78% of individuals 
who test positive are asymptomatic at the time of testing 
(Day, 2020), therefore likely accounting for the majority 
of new cases [7]. Research and public health guidelines 
have accordingly emphasised interpersonal proximity as 
a key risk factor, advising a minimum interpersonal dis-
tance of 1.5 m to reduce risk of transmission [11].

Meta‑population framework
In order to identify spatial patterns and accurately model 
viral contagion a minimum number of infected indi-
viduals must be established. This threshold allows for 
the identification of transmission parameters necessary 
for deterministic modelling [12, 13]. Once patterns can 
be detected, the meta-population theory for epidemiol-
ogy [14] provides a valuable framework for modelling 
and analysis. A meta-population is the aggregate of all 
global populations (Fig. 1). In the context of global CoV-
SARS-2 spread, each country can be considered an indi-
vidual population [12]. The transmission of CoV-SARS-2 

is therefore broadly characterised by inter-population 
transmission and intra-population contagion.

Intra-population contagion [15, 16] can be locally 
driven, where individual members inside the extent of 
the initial outbreak boundary (Wuhan, China) begin to 
transmit the disease to other members of the local pop-
ulation. Should a threshold number of individuals be 
diagnosed, the local socioeconomic, built environment, 
and spatial patterns can then be analysed [13, 15]. The 
examination of these types of patterns and associations 
assists researchers and public health officials to define 
the spatial diffusion and reproduction of a disease, and 
accordingly, target prevention measures and direct inter-
ventions [17, 18].

The subsequent horizontal transmission is referred to 
as inter-population invasion [15, 19] and is characterised 
by a semi-stochastic process that acts on a global scale 
[15]. The infected members of the population transmit 
the virus from the outbreak extent to new uninfected 
cities between nodes of transportation networks such 
as airports and train stations [20, 21]. Global transmis-
sion of emerging infectious diseases (EIDs) is therefore 
the iterative process of intra-population contagion in a 
population that then allows a stochastic jump to inter-
population invasion. We hypothesise that socioeconomic 
characteristics of a population and features of the built 
environment comprise important factors in both intra-
population contagion and inter-population invasion (e.g., 
employment rates, social assistance, airports, and major 
train stations). By examining geospatial patterns of inci-
dence and associated social- and built-environmental fea-
tures across Germany, this cross-sectional study frames 
Germany as a population and each constituent county 
(NUTS-3) as an individual member of the population.

Socioeconomic and built environment factors
Socioeconomic status (SES) is well understood to play 
a significant role in the transmission of infectious dis-
ease, for example, through intra-population contagion 
among socioeconomically homogeneous subpopula-
tions [22]. For example, age plays a role both in indi-
vidual risk of respiratory infection and in the frequency 

Conclusions: The multimethod ESDA approach provided unique insights into spatial and aspatial non-stationarities 
of COVID-19 incidence in Germany. BART and GAM modelling indicated that geographical configuration, built envi-
ronment densities, socioeconomic characteristics, and infrastructure all exhibit associations with COVID-19 incidence 
in Germany when assessed at the county scale. The results suggest that measures to implement social distancing 
and reduce unnecessary travel may be important methods for reducing contagion, and the authors call for further 
research to investigate the observed associations to inform prevention and control policy.
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disease, Exploratory Spatial Data Analysis (ESDA)
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and nature of interpersonal contact [23]. More broadly, 
higher rates of infectious diseases such as influenza, 
invasive group A streptococcal infections, and pneu-
mococcal infections have been observed among 
socioeconomically deprived subpopulations (e.g., low-
income, high unemployment) [22]. Spatial analysis of 
SES has thus been widely used to investigate social and 
economic risk factors, predict high-risk areas, and tar-
get interventions [24, 25].

It is well understood that the built environment 
exerts an influence on patterns of human mobility and 
social interaction, which are in turn key factors in the 
transmission and prevalence of infectious disease [26]. 
For example, the aforementioned study on the risk res-
piratory infections indicates that the location of contact 
is important for the risk of transmission [23]. Further-
more, the spatial configuration of buildings can have 
an impact on disease transmission, for example, by 
affecting the density of persons moving through a con-
fined space [26]. However, the density of features of the 
built environment has, to our knowledge, not yet been 
comprehensively modelled for spatial-epidemiological 
analysis of infectious disease, presenting an important 
avenue for investigation which this study seeks to begin 
to address.

Geospatial analysis
Spatial epidemiology emphasises the importance of geo-
graphical patterns in understanding disease risk factors, 
incidence, and outcomes [17, 18]. For example, incidence 
rates of an infectious disease often exhibit spatial asso-
ciations with SES and the built environment [18], which 
function as possible determinants of interpersonal con-
tact and vulnerability to infection. The identification and 
investigation of geospatial patterns and high-/low-rate 
clusters is therefore a key process for characterising aeti-
ologies, identifying high-risk populations, and targeting 
interventions [27].

The use of geographic information systems (GIS) facili-
tates empirical representation of the spatial associations 
between socioeconomic- and built environments and 
infectious disease incidence [17, 28]. Many studies focus 
on spatial autocorrelation, which provides a means of 
estimating the influence of proximity on the interactions 
between nearby features [28], both in that proximal fea-
tures are more likely to interact and are more likely to be 
similar in composition [17, 29]. GIS thus provide a plat-
form for modelling and analysing spatial autocorrelation 
within a spatial epidemiology framework [18], for exam-
ple, by interpolating and examining spatiotemporal pat-
terns of infectious disease [30] and identified associations 

Fig. 1 The meta-population framework describes the global and local transmission of emerging infectious diseases (EIDs) by inter-population 
invasion and intra-population contagion [15]
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with socioeconomic characteristics of subpopulations 
and relevant prevention and control measures [31].

Conversely, strictly mathematical approaches to epide-
miological modelling focus predominantly on the simu-
lation of propagation dynamics under various defined 
conditions [12, 15, 32]. These models focus on identify-
ing transmission vectors and simulating transmission 
scenarios [32], and may include a spatial component [33]. 
As computational processing power continues to rapidly 
improve, researchers are increasingly able to incorporate 
sophisticated mathematical techniques, such as Bayes-
ian machine learning, to model both geospatial patterns 
and socioeconomic/environmental data within a spatial-
epidemiological framework [18, 34]. These efforts are 
key to identifying otherwise concealed geographical pat-
terns and associations, an important initial step towards 
advancing our understanding of risk factors and trans-
mission dynamics [27].

A rapid increase in the quantity of socioeconomic, 
environmental, and health data is further driving mod-
ern statistical methodologies for epidemiology modelling 
[35], as a growing number of variables must be modelled 
in order to more comprehensively explain spatial pat-
terns of disease. Consequently, such methods are able 
to account for more complexity and thus have immense 
value for developing more informed decisions in health 
care and disease control [34]. Of particular prominence 
in recent years is the use of geospatially-explicit artificial 
intelligence for environmental epidemiology [36], includ-
ing the combined use of machine learning, GIS, precision 
incidence data, and exposure modelling.

This cross-sectional study presents an empirical explo-
ration and interpretation of the spatial patterns exhib-
ited by COVID-19 incidence rates across Germany. A 
combination of epidemiological and machine learning 
techniques are used to identify associations between 
COVID-19 incidence rates and socioeconomic and built-
environment characteristics at the county scale.

Methods
We followed a linear methodology, as shown in Fig.  2, 
comprising data acquisition and preprocessing, spatial 
modelling, and aspatial modelling. County-level COVID-
19 incidence data published by the Robert-Koch-Insti-
tute were downloaded through the publicly-accessible 
NPGEO-DE platform [37]. Socioeconomic data for Ger-
many were collected through the INKAR (Indikatoren 
und Karten zur Raum- und Stadtentwicklung) data por-
tal [38]. Built environment features were downloaded 
from OpenStreetMap [39] and the German Bundesamt 
für Kartographie und Geodäsie [40] data. Population 
densities were derived from the European Environment 
Agency’s 100-metre resolution Population Density Grid. 

Exploratory analysis of the geographic patterns was then 
undertaken using a geographical trend analysis and Local 
Indicators of Spatial Association (LISA). Finally, vari-
able selection was conducted using Bayesian Additive 
Regression Trees (BART), where the most influential spa-
tial, social-economic, built environment variables were 
selected for further interpretation in the context of the 
COVID-19 epidemic in Germany as of 1 April 2020. A 
40-fold cross validation was conducted on the final BART 
outputs to assess prediction accuracy and model fit.

Data acquisition and preprocessing
Incidence rates
COVID-19 incidence were downloaded on 1 April 2020, 
comprising a table of confirmed cases (N = 57,298) by 
county (N = 401) from the first case on 28 January until 
31 March, comprising patient age group, sex, county of 
primary residence (NUTS-3), and the date at which the 
confirmed case was reported to the local health author-
ity. Neither the date, location, nor means of infection 
were recorded.

Due to high spatial variation of age distributions in 
Germany, this analysis uses age-adjusted incidence rates. 
The age groupings used by the Robert-Koch-Institute 
for COVID-19 case reporting differ from those reported 
in population datasets; we therefore estimated age dis-
tributions for every county in the study area (N = 401). 
Based on the existing INKAR data, samples for each of 
the original age groups with sample sizes correspond-
ing to the group’s proportion of the total county popu-
lation were simulated. Those samples were then used to 
approximate an empirical cumulative distribution func-
tion for the entire age distribution, from which the prob-
abilities for the new age groups congruent with those of 
the RKI were derived. These estimated probabilities were 
then multiplied by the municipality population to acquire 
an estimated absolute number of persons per age group. 
Our R code is available on GitHub [41]. The results were 
manually cross-checked against INKAR population data 
for validation and exhibited less than 2% error. With 
the resulting base population distributions we directly 
adjusted municipal incidence rates to the German stand-
ard population and natural-log-transformed the result to 
improve the distribution of rates for statistical analysis. 
The resulting rates were mapped for visualisation and 
spatial analysis.

Socioeconomic data
The socioeconomic datasets were acquired using the 
INKAR data access tool, which comprises social, demo-
graphic, and economic characteristics of counties col-
lected by various ministries, the federal states, and the 
municipal governments, and is validated and managed 
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by the German federal government. The dataset includes 
a diverse set of indicators in the fields of economics, 
demography, education, and other social data.

Built environment densities
OpenStreetMap data for Germany for each selected built 
environment feature type were downloaded in April 2020 
as separate vector files from Geofabrik [39] and were 
used as the primary dataset for constructing our built 
environment variables. For modelling purposes, we sep-
arately computed a peak density value for each feature 
type in each county (e.g., airports, train stations, grocery 
stores, parks). To calculate the peak densities, we con-
structed a novel spatial density function to account for 
each feature type’s unique spatial structure, based on an 
heuristic approximation of geographical accessibility for 
each county population. This algorithm accounts for both 
the number and relative proximity of features of each 
type in each county [42], which were calculated using the 

Kernel Density Estimates function in the R package spat-
stat [43]. We created a custom parameterisation for each 
built environment feature within each county, calculated 
as the optimal bandwidth hopt:

where σ is the standard distance of all features within a 
given county and n is the total count of the selected fea-
ture type within that county [44]. A logit link function 
was then applied to estimate the optimal bandwidth for 
each county, selected in order to reduce biased weight-
ing of spatially dense clusters of features at the expense 
of smaller clusters, e.g., in small towns and villages where 
person-to-person transmission is also likely to occur.

The calculated densities were then summarised for 
each feature type across each county, and each respec-
tive maximum density value was extracted for statistical 

hopt =
[ 2
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Fig. 2 Methodology to examine patterns of COVID-19 incidence as defined by spatial, socioeconomic, and built environment features and 
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modelling, based on the assumption that maximum den-
sities provide a better approximation of person-to-person 
transmission than means or medians (e.g., in mostly rural 
counties with a small, yet very dense town, as is common 
in many regions of the study area).

Exploratory spatial modelling
Local indicators of spatial association (LISA) was used to 
assess whether there was spatial clustering of log adjusted 
incidence rates for Germany. LISA is an exploratory tool 
used to statistically assess geographical clustering of high 
and low values in a dataset [45]. LISA calculates local 
spatial autocorrelation at each individual county using 
a single variable, enabling the quantitative estimation of 
local spatial clustering [45], essentially indicating how 
similar an observation is to all other observations within 
a defined radius [46]. We used LISA to identify statisti-
cally significant hot spots (clustering of high values), cold 
spots (clustering of low values), and spatial outliers (e.g., 
a county with high rates that is within a low-rate clus-
ter). LISA was calculated using ArcGIS 10.7.1 [47]. The 
distance band (radius of the spatial weight function) was 
determined by calculating the average distance between 
all county centroids and an inverse distance squared 
parameter was used to define the spatial weighting func-
tion, selected to ensure higher weights were given to 
nearer counties.

Exploratory spatial trend analysis of adjusted incidence 
rates was conducted to identify spatial structure in the 
data. Trend analysis is the identification and description 
of a univariate spatial pattern using multiple regression, 
where the response variable is the variable of inter-
est (adjusted incidence rate) and the predictor variables 
are longitude and latitude [29, 48, 49]. The results can 
be interpreted as a global indicator of the spatiality of 
response variable [50].

BART 
We elected to use a Bayesian modelling approach, which 
has the advantage (among others) of not being bound to 
the assumption of parametric parameter distributions, 
while facilitating model parameterisation based on prior 
data and/or iterative selective sampling of observed data 
distributions [51]. This approach allows for a reduction of 
bias and variance and for minimizing error when analys-
ing small samples for inferential and prediction/classifi-
cation problems [34, 52].

In order to identify important socioeconomic and built 
environment covariates with COVID-19 incidence rate, a 
Bayesian Additive Regression Trees (BART) model was 
selected. BART is a machine learning tool that iteratively 
creates regression trees with variable hyperparameter 
distributions (e.g., number of nodes, tree depth) [53]. The 

parameter distributions are recorded from multiple itera-
tions using a Metropolitan-Hastings sampling algorithm, 
as all parameters and hyperparameters are not assumed 
to be parametric [53]. Unlike most ensemble methods, 
BART computes Bayesian posterior distributions to 
approximate the nonparametric model parameters and 
selects a strict error variance parameter to reduce the 
risk of overfitting. Additionally, BART has been shown to 
be effective at finding structure in high dimensional data 
[54] lending itself to be an exploratory method. further 
insights with the addition of an internal variable reduc-
tion method to emphasise important variables [53]. We 
used further measures to prevent overfitting and to select 
the optimal independent variables and hyperparameters 
by running iterative k-fold cross-validations with 5 to 20 
folds. The BART Machine models were run in RStudio 
(v.1.2) using R (v.3.6.3) [55] with the BARTmachine pack-
age [53].

For model specification, we entered the natural-
log-transformed age-adjusted incidence rates as the 
response (dependent) variable and all socioeconomic 
and built environment variables as candidate explana-
tory (independent) variables. Explanatory variable inclu-
sion was determined through iterative cross-validations, 
in which each successive permutation of a BART model 
was assessed according to its error variance and RMSE 
to derive the model with the highest prediction perfor-
mance. Overfitting is penalised with the BART model 
from its prior on error variance which limits the weights 
given to trees with small σ 2 values [53].

Variable importance plots were generated from the 
BART model, which displays a quantitative metric of a 
variable’s relative influence on model predictions, com-
pared to all other variables [53]. We also generated Partial 
Dependence Plots (PDPs), which are graphical outputs 
that illustrate the marginal effect of each independent 
variable on the response variable [56–58]. A PDP only 
displays the marginal effect of each independent variable 
in relation to the influence of all other independent vari-
ables, and should be interpreted as exploratory [53].

To assess how the final COVID-19 BART model should 
generalize to an independent data set, out-of-sample 
cross-validation was conducted on the 31 Final Vari-
ables that our BART model predicted The original train-
ing data were randomly split into training (n = 301) and 
testing (n = 100) subsets and a new BART model with 31 
variables was computed. The model of the training subset 
was then used to predict the out of sample values of the 
testing subset. Finally, the actual values and the predicted 
values were compared with a linear regression analysis 
and the resulting RMSE and R2 were calculated. Model 
outputs were validated using the test data and the result-
ing RMSE was calculated. This step was iterated 40 times, 
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and an average RMSE was computed for all 40 runs to 
internally validate our predictions [56, 59].

GAM
Due to nonlinear relationships expressed by model covar-
iates, General Additive Models (GAMs) provide a useful 
semiparametric technique for modelling nonlinear asso-
ciations [60]. GAMs operate as an extension of GLMs, 
but allow for the inclusion of smoothing terms, which 
can be explained by the following general form [61]:

where Ai is the ith row of the parametric model matrix 
of the model with parameters γ , and the smooth terms 
�j fj(xji) constitute the nonparametric part of the model. 
The response variable yi with the expected value µi fol-
lows a distribution from the exponential family, for which 
a link function g(µi) can be specified [61]. The GAM 
model predictor variables were the top ten variables that 
were determined from the BART model’s variable impor-
tance plots, and the natural log-transformed age-adjusted 
incidence rate was selected as the response variable. 
Since the transformed incidence rates are approximately 
normally distributed, a gaussian model with an identity 
link function was used. The applied the GAM equation 
can be described as:

where log(AdjRate) is the expected value of the natural 
log-transformed age-adjusted incidence rate, and the 
intercept is given by β0 . �jβjxji accounts for the para-
metric model part to assess linear effects. For the non-
linear predictors �j fj(xji) thin plate splines were used as 
basis functions. For the county centroid coordinates a 
bivariate, isotropic smoothing term f (x1i, x2i) was used, 
containing latitude and longitude as variables x1 and x2 
respectively. A second GAM model was conducted with-
out the latitude and longitude variables to reduce the 
concurvity amongst the socioeconomic and built envi-
ronment variables.

Results
There are 401 counties in Germany; as shown in Fig. 3, 
these vary in size, such that the counties in Southern Ger-
many are generally smaller with higher population den-
sities. Natural log-transformed age-adjusted incidence 
rates are shown, indicating spatial variation between the 
northeast and south-southwest of the study area.

Spatial trend and LISA
The results of the trend analysis (Fig.  4b, c) indicate no 
apparent correlation between longitude and incidence 

g(µi) = Aiγ +�j fj(xji), yi ∼ EF(µi,φ)

log(AdjRate)i = β0 +�jβjxji +�j fj(xji)+ f (x1i, x2i)

rates, as can also be observed in the map (Fig. 4a). How-
ever, latitude does exhibit a weak-to-moderate cor-
relation (R = −0.46), such that rates (shown as vertical 
extrusions on the map) indicate higher rates in the south. 
The LISA results (choropleth map in Fig.  4a) indicate a 
large cluster of high rates was observed in the south, 
whereas the northern and eastern regions exhibit a clus-
ter of low rates. These constitute two major clusters with 
several outliers, for example, some counties (e.g., Erlan-
gen-Höchstadt and Oberallgäu) are low-rate outliers. 
An east-west corridor with no significant spatial cluster-
ing is observed, dividing the north-eastern and southern 
clusters.

These trend analysis and LISA results indicate the pres-
ence of two distinct spatial patterns within Germany, 
enabling the classification of all federal states into two 
regions for the subsequent analysis: High-Rate Regions 
(HRR, referring to the southern cluster) and Low-Rate 
Regions (LRR, referring to the northern cluster). These 
regions are separated by a thick black line in Fig. 3.

Regional comparison
The North/LRR accounts for 48.5% (173,287 km2 ) of 
the total land area and 35.6% of the population, and the 
South/HRR for 51.5% (183,887 km2 ) of the total land area 
and 74.4% of the total population of Germany.

The adjusted incidence rates exhibit two distinct dis-
tributions when regionally classified by LRR and HRR 
(Fig.  5), indicating that LRR and HRR are two distinct 
patterns. For ease of interpretation, further examination 
of the two regions is described using untransformed, age-
adjusted values (Table 1).

The south western region has a greater representa-
tion of higher incidence rates where X = 98.96 cases per 
100,000 and σ = 70.73 and minimum and maximum inci-
dence rates of 20.60 and 673.93. The northern region has 
less proportion of counties, with the X = 41.92 and σ = 
25.95 with county-level rates ranging from 5.76 to 139.10. 
LRR Germany’s max value of 139.10 (Mühldorf a. Inn), 
was lower than 42 counties in HRR, where the max was 
673.93 (Tirschenreuth).

BART results and validation
The initial BART model included 366 independent vari-
ables (longitude, latitude, federal state (Bundesland) and 
NUTS2 region, and all socioeconomic and built envi-
ronment variables). The response variable was the age-
adjusted incidence rate per 100,000 residents.

Two BART models (Table 2) were produced to predict 
COVID-19 incidence rates. The preliminary model (366 
variables) produced a root mean square error (RMSE) 
of 0.23 log-transformed age-adjusted incidence rate per 
100,000 with a range of 2 to 6 and a pseudo R2 of 0.886. 
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This cross-validated model accounts for 88.6% of the var-
iability in incidence rates, indicating a robust prediction.

To decide on the subset of variables that are contrib-
uting to the largest proportion of model influences, the 
variable selection function in the BART package was 
implemented [53]. Of the 366 variables, this variable 
reduction method removed all but 31 variables, as they 
were deemed the most important to the model’s predic-
tions. This saw a reduction in pseudo R2 from 0.886 to 
0.734, equating to a 15% reduction in explained variabil-
ity. The RMSE correspondingly increased to 0.36, indicat-
ing that the final model predicted age-adjusted incidence 
rates of COVID-19 for German counties with an accu-
racy of +/− 1.3 cases per 100,000. The residuals of both 
models were found to be normally distributed and exhib-
ited no geographical clustering. The cross-validation was 

completed with 40 folds, and the resulting R2 was 0.57 
with an RMSE of 0.46, equating to a mean error of 1.58 
cases per 100,000.

The density of Christian churches contributed the 
greatest number of tree splits in the final BART model. 
Latitude and Longitude respectively ranked second and 
third, indicating the importance of the spatiality in pre-
dicting incidence rates, as also observed in the trend 
analysis and LISA results. This spatial pattern is based on 
the x and y coordinates for the county centroids, which 
the BART model used to split decision trees for rate 
prediction. Socioeconomic variables account thereafter 
for a considerable proportion of the variability in rates, 
the strongest of which was Voter Participation rate. The 
remaining socioeconomic and built environment vari-
ables are described in rank order in an Additional file 1 in 
the appendix.

2
3
4
5
6

Natural Log−Transformed
Age−Adjusted Incidence Rate

NUTS3 (Counties)

NUTS1 (Federal States)

Subregional Delineation

Fig. 3 Natural log-transformed age-adjusted incidence rates of COVID-19 as of April 1st
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Partial dependence
The ten most important variables from the BART model 
were selected for further description. All variables and 
their summary statistics are listed in the Additional file 1: 
appendix. The partial dependence plots and region-
specific histograms are shown in Fig.  6. We observed 
that increase in latitude (Fig.  6a) is associated with a 
strong marginal decrease in COVID-19 incidence rate, 

indicating that the model is accounting for the spatial 
pattern observed in the trend analysis. A partial depend-
ence for longitude (Fig.  6b) indicated that farther east 
latitudes are associated with higher incidence rates. This 
trend is observed to be non-linear, rather quadratic. High 
rates along the Austrian border appear to account for this 
partial dependence.

LRR was observed to feature lower densities of Chris-
tian churches than HRR (Fig.  6c), and a higher density 
is associated with an increase in COVID-19 incidence 
rates. The voter participation rate (2017 national elec-
tion) features minor differences between the two subre-
gions (Fig. 6d) and the PDP indicates a positive relation 
between voter participation and incidence rates with a 
gradient increase between the 20th and 40th percentiles 
(73.5% and 74.3% participation). The histograms of the 
proportion of foreign guest overnight stays compared 
to the total number of overall stays (Fig.  6e) slight dif-
ferences between the two subregions, accompanied by a 
positive association observed in the accompanying PDP. 
Conversely, there appear to be no significant differences 
in the distributions nor any significant observable partial 
dependence for long-distance train stations (Fig. 6f ).

The regional population potential (Fig.  6h) measures 
the likelihood of direct interactions to occur between 
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Fig. 5 Histogram of the high rates region and low rates region 
subsets of COVID-19 incidence rates

Table 1 Descriptive statistics for untransformed age-adjusted incidence rates per 100,000 for Germany and for the low 
rate and high rate subregions, and the differences between subregions

Adjusted rates region N Mean Median SD Range Min, Max

Germany 401 79.04 64.07 65.01 668.17 5.76, 673.93

high-rate region 261 98.96 81.17 70.73 653.33 20.60, 673.93

low-rate region 140 41.92 35.07 25.95 133.34 5.76, 139.10

Difference 121 57 46.1 44.8 – –

Table 2 BART model summary statistics with internal validation

Comparisons were made between the preliminary variables (n = 366) and the final variables (n = 31)

Model name Number of variables RMSE Pseudo‑Rsq Shapiro‑wilk test 
of normality of residuals 
(p‑value)

Preliminary variables 366 0.23 0.8862 4e−05

Final variables 31 0.36 0.7341 0.00012

Fig. 6 Partial Dependence Plots (PDP) of the 10 most prevalent variables in the final Bayesian Additive Regression Tree (BART) model. Histograms 
are shown for the entire country (green), for only the low rates region (LRR, teal), and for only the high rates region (HRR, purple). The PDPs indicate 
marginal changes in the predicted (log-transformed, age-adjusted) incidence rate per 100,000 residents (upper y-axis) for different values of each 
independent variable (x-axis)

(See figure on next page.)
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inhabitants [38]. The PDP indicates small marginal 
changes in incidence rates for low values of regional 
population potential, which can be interpreted as evi-
dence that in counties with a lower probability of human 
interaction, there is a lower probability of viral contagion. 
The greatest increase in partial dependence is observed 
between the 20th and 80 percentiles of regional popula-
tion potential index scores (14,016 to 47,067), indicating 
a strong non-linear effect of this variable on incidence 
rates. Both long-term unemployment rate and unem-
ployment rate ages 15 to 30 exhibit differences between 
the study subregions, and both indicate minor partial 
dependence, such that higher unemployment rates cor-
respond with lower observed COVID-19 incidence rates.

GAM results and validation
Initially two base models were fitted, one with the ten 
variables that attained the highest variable importance in 
the BART model, and one with eight variables, for which 
the variables for longitude and latitude were excluded. In 
both models the residuals showed no association with the 
response variable. The model including latitude and lon-
gitude showed high concurvity values and suffered from 
lower significance for the non-spatial variables (except 
church density). Further modelling was conducted on the 
eight non-spatial variables and the final GAM model was 
chosen by selecting the model with the lowest RMSE (as 
validated by a 1000 fold-cross validation) and AIC scores. 
Among the final model candidates, the non-spatial base 
model and the model including employment rate of per-
sons ages 15 to 30 and unemployment rate under 25 as 
single terms display the lowest AIC scores, the lowest 
RMSE value of 0.485 and an R2 of 0.557 with the mini-
mum value varying between the two test runs. This 
model reduced concurvity and model complexity, while 
performing equally well across all criteria examined here, 
it was chosen as the final model.

Discussion
Intra‑population contagion
The level of response to COVID-19 has been adapted to 
the current outbreak with increasing severity, with sev-
eral initial steps taken in May 2020 to reduce restrictions 
[62]. Local measures have included encouraging and or 
mandating a minimum interpersonal distance 1.5 m 
[11], closing schools, colleges, universities, community 
centres, and daycare centres, and a widespread imple-
mentation of “work-from-home” arrangements. These 
policies have almost certainly reduced the potential 
spread of SARS-CoV-2 in the study area, although this 
study focuses on a snapshot of data from 1 April 2020. 
The results presented herein may be valuable not only 
for improving our current understanding of transmission 

dynamics and population vulnerability, but also for 
informing outbreak control measures and targeting high-
risk areas.

The transmission of COVID-19 is facilitated through 
interactions occurring at multiple scales as they inter-
act with vertical and lateral transmission. The scale of 
interaction is defined by its own set of distinct spatial 
patterns [63]. By examining the assemblage of each pat-
tern, researchers can eventually define the structure of 
an otherwise prohibitively complex process [64, 65]. In 
this case, the underlying process of interest is the verti-
cal transmission of intra-population contagion in Ger-
many at population and sub-population scales. The 
population’s members in this instance can be defined by 
social, cultural, economic, and spatial factors [66, 67] as 
expressed by the county units.

The LRR and HRR groups defined in this study exhib-
ited very distinct and contrasting characteristics that 
were observed to influence the higher observed rates in 
the South-West and the lower rates in the North-East. 
This regional distinction and the variable selection gen-
erated using BART enabled us to achieve high model 
accuracy and define a spatial pattern related to intra-
population contagion as expressed by the sub-population 
observations.

The most important variables identified through our 
methodology merit further discussion. Higher densities 
of churches were observed in the HRR, which were iden-
tified as being the most important environmental vari-
able for predicting COVID-19 incidence rates. However, 
this does not necessarily indicate that the churches them-
selves are the loci of transmission, rather, we suggest that 
this feature of the built environment indicates locales 
with higher walkability where more interpersonal inter-
actions may take place, for example, due to higher social 
connectivity and community engagement, particularly 
among senior and elderly populations, who comprise the 
majority of Christian church attendees in our study area 
and are more likely to be diagnosed with COVID-19.

Similarly, features of transportation networks such as 
long-distance train stations may serve predominantly as 
an indicator of a community’s connectedness (inter-pop-
ulation invasion), as well as serving as nodes where high 
densities of travelling persons increase the probability 
intra-population contagion [21].

SES and built environment
The transmission of COVID-19 can occur through both 
direct and indirect interpersonal contact [68, 69]. The 
frequency and proximity of interactions between individ-
uals is therefore a primary determinant of infection risk. 
The nature and configuration of the social and built envi-
ronments therefore are likely to be significant covariates 
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of infection risk, and consequently, the resulting geo-
graphical distribution of incidence.

An key driving assumption in this study is that higher 
built environment densities will correspond with 
increased direct and indirect contact between persons, 
and decreased proximities [70]. However, our analysis 
revealed only one built environment variable that con-
tributed to an heuristically significant proportion of 
the variability explained in our models: the density of 
Christian churches. It is therefore crucial to underscore 
the generalised nature of how built environments are 
assessed in contemporary methodologies, specifically, 
that individual features do not necessarily constitute pre-
cise loci of transmission, rather, that they may serve as 
proxies for understanding the configuration of the built 
environment and difficult-to-measure characteristics of 
local populations (e.g., community connectivity amongst 
elderly populations).

Similarly, the socioeconomic variables highlighted in 
section  3.4 and listed in Additional file  1 appendix may 
serve to characterise local inter- and intra-connected-
ness, in addition to describing measurable characteris-
tics of a population (e.g., age distributions). In counties 
where the incidence rate of COVID-19 is high we postu-
late that those variables proxying social interactions also 
exhibit high values, because they increase the potential 
of spreading the virus through local instances of viral 
transmission.

Interestingly, three variables related to labour mar-
ket structure emerged as highly important in predict-
ing COVID-19 incidence rates: unemployment rate, 
unemployment rate among persons ages 25 or younger, 
and the employment rate of persons ages 15 to 30. The 
spatial distributions of these variables also reflect the 
geographical distribution of labour market participation 
across Germany, and our models and the resulting partial 
dependence plots indicate a negative correlation between 
employment rates and COVID-19 incidence rates. This 
may be explained by the mechanics of social exclusion 
and stratification, such that employed persons are more 
likely to have a more differentiated social network than 
unemployed persons [71]. However, social exclusion and 
relative isolation caused by unemployment may lead to a 
more closely knit socio-spatial milieu [72–74]. Accord-
ingly, we would expect that higher employment rates and 
lower unemployment rates are both correlated with a 
higher number of social interactions and reduced inter-
personal proximities, consequently amplifying the poten-
tial spread of SARS-CoV-2. Very recent research is poised 
to illuminate how and when the actors engaged in social 
service work are addressing changes in the social settings 
and consequent vulnerability experienced by socially 
excluded members of society [75, 76].

Spatial interconnection is represented in our final 
model primarily by access to long-distance train sta-
tions, the proportion of foreign guests, and the regional 
population potential variables. We therefore hypothe-
sised that the socio-spatial variables would be important 
in the resulting BART models. The partial dependence 
plots for these variables also correspond to our heuris-
tic expectations, for example, that voter participation 
and access to intercity train stations would exhibit posi-
tive partial dependence. However, these variables did not 
exhibit differences in their distributions between the two 
study regions, except for the proportion of foreign guests, 
which provides weak correspondence to a differentiation 
between the regions.

Modelling
The concept of parsimony is central to new modelling 
studies, particularly within an exploratory framework 
[77, 78]. However, when examining large, multidimen-
sional datasets in an exploratory fashion more complex 
methods are necessary, in order to detect potential pat-
terns and associations [79]. The observations that are 
made through simpler, often parametric models are criti-
cal in interpreting and contextualising results from mod-
ern exploratory data-mining models, which are often 
obscured behind the black box of machine learning [32, 
34]. In this context, the robustness thesis can therefore be 
considered a companion to parsimony, in that is asserts 
that a method is robust if observations made with a sim-
pler model are also present in a different or more com-
plex model [32].

This study demonstrates a novel methodology for sys-
tematically exploring geospatial patterns of EIDS while 
building ideas of the robustness thesis into our proce-
dure/methodology. Early exploratory analysis (as seen 
with the trend analysis) enabled us to gain confidence in 
the subsequent, more complex model’s explanation of the 
spatial pattern [32]. These early exploratory tests can also 
be used to validate assumptions about the spatial nature 
of a dataset while providing a method for separately vali-
dating trends observed in machine learning results. Lati-
tude and longitude represent simple spatial variables that 
can help define global functions of an observed spatial 
pattern of an epidemic, and enable researchers to param-
eterise models accordingly. For use of this study, we 
assumed there were no causal effects that are associated 
with the X and Y variables, instead, these variables were 
used to validate assumptions we witnessed in our trend 
model. This approach emphasises necessity for critically 
interrogating data and methods in order to be confident 
in our model outputs. As we try to ensure that our data 
heuristically correspond with the process or target under 
examination [27, 34, 80], we provide space for hypotheses 
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to be generated that question these intricate data and 
process relations.

The BART modelling demonstrated that although 
many variables can be used as inputs, the majority of var-
iability explained will largely be determined from a sub-
set of all variables, whenceforth only a marginal decrease 
in accuracy will be observed [58]. The preliminary model 
decreased from 366 to only 31 variables in the final 
model, and the R2 only exhibited a proportionally small 
decrease from 0.89 to 0.73, with very minimal differences 
in variable importance among the top 10 variables shown 
herein. Because the removal of 335 variables contributed 
to a 0.16 reduction in R2 , a more thorough investigation 
can be conducted on the remaining 31 variables. The 
cross validation results indicate that even when we fur-
ther subsetted the data (n = 301 and n = 100), the result-
ing R2 values remained relatively high ( R2 = 0.57) with an 
RMSE of 1.58 cases per 100,000.

The inclusion of the GAM models allowed for a com-
parison for the efficiency and accuracy of the BART 
model. As an exploratory tool, GAM was overburdened 
by the complexity of the data and the amount of varia-
bles. The BART analysis was not only required to deter-
mine variables for modelling, but the GAM model would 
often express too much concurvity when purely spatial 
variables such as latitude and longitude were used. The 
inclusion of the latitude and longitude were key indica-
tors to express the patterns described by the trend analy-
sis. However, once exploration is conducted, we suggest 
that future studies use the GAM modelling to further 
understand the associations that have been presented by 
the BART modelling.

Another important feature of this study is the use of 
partial dependence plots to assess marginal effects on the 
response variable for different values of an independent 
variable. For example, a visual examination of the PDPs 
uncovered patterns that were not evident from the maps 
and trend analysis. The use of PDPs for spatial-epidemi-
ological analysis is therefore recommended as a means 
of adding a layer of interpretability to machine learning 
models.

Study limitations
The modelling approaches selected for this study fea-
ture several key limitations that may have impacted our 
results. These limitations are explored in more detail in 
the methodology papers referenced herein, but several 
merit mention.

The use of administrative boundaries still requires 
that our results be considered in light of limitations 
such as the Modifiable Areal Unit Problem (MAUP) 
[18]. For example, it is unclear whether there are sig-
nificant differences in COVID-19 rates and population 

characteristics between high-incidence counties on 
either side of Germany’s borders with France, Switzer-
land, and Austria. The next phase of this project intends 
to expand this methodology to include cross-border 
effects, using NUTS3 data from multiple countries in 
continental Europe. In addition, this study is unable to 
determine whether the origin of each new COVID case 
is locally or internationally acquired. We have discussed 
variables that can be used as indicators for global (pro-
portion of foreign guest stays) or local (unemployment 
rates), however origin is still unknown.

A significant challenge in the modelling of many EIDs 
is that the true population incidence and prevalence 
are unknown, largely due to asymptomatic individuals, 
different testing rates and protocols, misdiagnosis, and 
differences in reporting protocols. This limitation may 
provide additional challenges when seeking to conduct 
analyses that include multiple countries, and must be 
taken into consideration during comparative or multi-
site studies.

Although BART provides a useful non-parametric 
means of exploring potential associations in large, mul-
tidimensional datasets, the use of Markov Chain Monte 
Carlo to generate prior distributions for all param-
eters and hyperparameters requires a strong penalty 
against overfitting; it is unclear whether the built-in 
penalty against sigma-squared is sufficient. This study 
used an internal cross-validation approach to account 
for overfitting, however, an independent validation 
dataset could be used in future studies to assess these 
effects. Additionally, because the Metropolitan-Hast-
ings algorithm uses a random seed, some variation in 
model repetitions is observed and exact replication of 
results requires additional parameterisation. In order to 
address this limitation, we provide pre-set seeds in our 
code, linked in this article. The use of regression trees 
with many nodes also increases the probability of spuri-
ous splits occurring, although BART has the advantage 
of using the sums of multiple iterations to reduce these 
effects. However, these instabilities require that BART 
be used as an exploratory tool, and not in a confirma-
tory manner. For this reason, the use of GAMs or other 
robust regression techniques is vital for assessing and 
confirming BART results.

Although exploratory results determined that no other 
patterns existed on other administrative scales (NUTS1 
and NUTS2), this study focussed primarily on the 
NUTS3 (county) level of geography, limiting our model 
interpretations and ability to generalise from the data. 
Additionally, it has been shown that the spatial scale of 
data analysed dictates the spatial granularity of a study, 
which could in turn limit the ability to identify the cor-
rect scale for the process under investigation [18].
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Conclusions
This study provides a first step towards understand-
ing the spatial, socioeconomic, and built-environment 
structure of COVID-19 incidence across Germany. 
Through the BART modeling and variable importance, 
10 variables were identified as being very important for 
explaining variance in incidence rates: church density, 
latitude, longitude, voter participation, foreign guests, 
accessibility by intercity rail, employment rate for ages 
15–30, population potential, long term unemployment 
rate, and unemployment under age 25. When split spa-
tially into northeastern (LRR) and southwestern (HRR) 
regions, clear trends and patterns emerged that assisted 
with interpreting the most important independent vari-
ables and their respective influence on the prediction of 
COVID-19 incidence rates.

Additionally, this study provides an example of the 
utility of partial dependence plots for gaining more 
detailed insights from machine learning models. Espe-
cially when combined with other spatial tools, inte-
grating these approaches holds strong potential for 
elucidating a more complete explanation of epidemio-
logical patterns with greater precision and accuracy. 
However, a broader movement is required to establish 
process-based methods for disease and pandemic map-
ping [27] in order to ultimately improve outbreak pre-
vention and control measures.

We encourage future machine learning studies to fol-
low a similar level of data exploration as shown herein. 
This procedure facilitated a better understanding of 
how the produced model interpreted the input data 
by enabling the observation of spatial patterns in three 
increasingly complex representations (trend analysis 
to LISA to BART). This satisfied assumptions defined 
by the robustness thesis [32], while the splitting of the 
study area into geospatially relevant regions allowed for 
increased interpretability of machine learning model 
results and the partial dependence plots.
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