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Abstract 

Background:  Geospatial approaches are increasingly used to produce fine spatial scale estimates of reproductive, 
maternal, newborn and child health (RMNCH) indicators in low- and middle-income countries (LMICs). This study aims 
to describe important methodological aspects and specificities of geospatial approaches applied to RMNCH coverage 
and impact outcomes and enable non-specialist readers to critically evaluate and interpret these studies.

Methods:  Two independent searches were carried out using Medline, Web of Science, Scopus, SCIELO and LILACS 
electronic databases. Studies based on survey data using geospatial approaches on RMNCH in LMICs were considered 
eligible. Studies whose outcomes were not measures of occurrence were excluded.

Results:  We identified 82 studies focused on over 30 different RMNCH outcomes. Bayesian hierarchical models were 
the predominant modeling approach found in 62 studies. 5 × 5 km estimates were the most common resolution and 
the main source of information was Demographic and Health Surveys. Model validation was under reported, with the 
out-of-sample method being reported in only 56% of the studies and 13% of the studies did not present a single vali-
dation metric. Uncertainty assessment and reporting lacked standardization, and more than a quarter of the studies 
failed to report any uncertainty measure.

Conclusions:  The field of geospatial estimation focused on RMNCH outcomes is clearly expanding. However, despite 
the adoption of a standardized conceptual modeling framework for generating finer spatial scale estimates, meth-
odological aspects such as model validation and uncertainty demand further attention as they are both essential in 
assisting the reader to evaluate the estimates that are being presented.
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Background
Reproductive, maternal, newborn and child health 
(RMNCH) is central to the Sustainable Development 
Goals (SDG) agenda for 2030 given its potential for 
improving health and quality of life of current and future 
generations as summarized by the motto “survive, thrive, 
transform” adopted by the Every Woman Every Child ini-
tiative [1]. Despite progress in the area, with the increase 
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in coverage of several indicators, there is yet much to be 
achieved [2]. Planning and implementation of essential 
health interventions, delivered by supporting organiza-
tions and governments, is mainly done at small admin-
istrative divisions such as districts, states, provinces, 
regions or counties [3]. This requires geographically 
disaggregated information, which enables more precise 
adjustment of policies and targeting of resources [4].

Information on RMNCH indicators is predominantly 
obtained from national health surveys in low- and mid-
dle-income countries (LMIC), which offer standard-
ized and reliable estimates [5]. Still, most surveys are 
usually designed to provide representative estimates at 
the largest administrative divisions as further disaggre-
gation would require larger sample sizes [6]. Different 
estimation methods are required since direct estimation 
of lower administrative units in these surveys is highly 
imprecise. Geospatial approaches have been widely used 
for estimating RMNCH outcomes for small areas using 
georeferenced survey data. These methods derive indirect 
estimates from statistical models by ‘borrowing strength’ 
across space or from supplementary data, such as geo-
spatial variables, censuses and administrative records [7]. 
However, censuses are carried out every 10 years or more 
in LMICs and administrative records are often incom-
plete, of poor quality or unavailable. Therefore, geospatial 
variables (information that is continuous across space, 
often retrieved from satellites or spatial interpolation), 
have been frequently used as supplementary data given 
their availability, timeliness, and reliance. The literature 
often uses the terms model-based geostatistics, small 
area estimation and (geo)spatial modeling interchange-
ably as model-based approaches to derive estimates for 
small geographies assisted by supplementary data.

Despite the rapid increase in the use of geographic 
information systems in RMNCH over the past dec-
ades, only a few studies have attempted to summarize 
these efforts. Two of them presented a broad review 
of spatial analyses in RMNCH [8] and health surveys 
in Sub-Saharan Africa [9], while one study focused 
on malaria transmission modeling [10]. Lastly, Rah-
man [11] carried out a review focusing on the meth-
ods used for estimation. To our knowledge, no study 
has comprehensively evaluated the most important 
methodological aspects for geospatial estimation of 
RMNCH indicators in LMICs. This assessment is nec-
essary to identify approaches currently being used, 
their strengths and limitations and to help inform 
and improve future studies. Also, since these meth-
odologies are relatively complex, non-specialists may 
struggle to evaluate and correctly interpret such stud-
ies. Therefore, this study aims to discuss the core 

methodological aspects of geospatial estimation, 
including any specificities employed for each RMNCH 
outcome, in studies focused on producing fine spatial 
scale estimates. In addition, we aim to enable non-spe-
cialist readers to critically evaluate and interpret these 
studies.

Methods
Conceptual framework
The structure and methodological aspects discussed in 
the review are guided by a standard modeling framework, 
adapted from Mayala et al. [12] and presented in Fig. 1. 
This conceptual framework is widely adopted in the lit-
erature and geospatial estimation studies, as it defines the 
flow of the modeling process. The use of the conceptual 
framework is not part of the eligibility criteria and has no 
effect on the selection of the studies.

Search strategy
Two independent reviewers carried out the same search 
strategy on August 28th 2020, screened and extracted the 
characteristics of the studies. Medline, Web of Science, 
Scopus, SCIELO and LILACS electronic databases were 
searched for studies based on survey data which applied 
geospatial approaches to estimate RMNCH outcomes in 
LMICs.

The search strategy consisted of a combination of 
health and geospatial keywords. The keywords “health” 
and “epidemiology” were used to define a broad health 
construct, rather than focusing on RMNCH outcomes, 
to increase the sensitivity of the search. For geospatial 
approaches, keywords were: “geostatistical”, “geo-statis-
tical”, “spatial modeling”, “spatial modelling”, “high-res-
olution mapping”, “geospatial”, “small area estimation”, 
“small area estimates” and “spatial interpolation”. The 
complete keywords combination using logical operators 
is provided in Additional file  1. No restrictions on lan-
guage or publication date were applied. In addition to 
the electronic databases, reference lists of the selected 
articles were searched for additional eligible studies not 
detected by the initial search strategy.

Articles retrieved from the search strategy were com-
bined using Mendeley and exported to Rayyan, a web 
application for systematic reviews, for screening [13]. Ini-
tial duplicates were automatically removed in Mendeley, 
and the remainder were manually removed using Rayyan. 
The protocol for the systematic review was registered on 
PROSPERO (ID: 206323). This review follows the guide-
lines from PRISMA, and the checklist is provided in 
Additional file 2.
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Eligibility criteria
To be eligible, studies must have fulfilled all the following 
criteria:

1.	 Carried out model-based geospatial approaches to 
obtain more geographically precise estimates than 
allowed by direct estimation due to insufficient sam-
ple size or to lack of representativeness;

Fig. 1  Overview of a geospatial estimation process (adapted from Mayala et al. [12])
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2.	 Focused on RMNCH outcomes: coverage or impact 
indicators relevant to public health policies for 
women in reproductive age (15 to 49 years) or chil-
dren aged < 5  years. Studies covering a broader age 
range for children but including the desired ages 
were also eligible;

3.	 Outcomes had to be measured in LMICs as defined 
by the 2020 World Bank country-income classifica-
tion [14];

4.	 The main source of information were survey data and 
the minimum geographical coverage was an entire 
country.

The eligibility criteria were applied to all retrieved 
studies. Records were independently screened by both 
reviewers, first assessing titles and abstracts, then by 
reading the full text of the selected studies.

Exclusion criteria
Studies that did not estimate measures of occurrence of 
the coverage or impact outcomes were excluded.

Data extraction and quality assessment
We developed a Microsoft Excel spreadsheet to extract 
relevant characteristics of the selected studies based on 
ten pre-selected studies and on expert opinion. Then, 
each reviewer manually extracted the information from 
all the selected studies separately and the spreadsheets 
were compared later with disagreements dealt by con-
sensus. The extracted characteristics, details, and guid-
ance on how the spreadsheet was filled can be found 
in Additional file 3. Quality of the studies was assessed 
using Joanna Briggs Institute checklist for prevalence 
studies [15] and presented in Additional file 3.

Results of the literature search
After removing duplicates, 5567 records were identi-
fied for title and abstract screening, resulting in 126 
selected articles. After full-text assessment, another 
44 studies were removed yielding a total of 82 studies 
included in this review (Fig.  2). Several studies using 
the methods of interest, but estimating outcomes not 
considered to be RMNCH or covering age ranges out-
side our focus were not included in the review. The ear-
liest studies identified were carried out in 2000, but the 
field grew steadily since 2016, comprising over 50% of 
the included studies (Additional file  1). The following 
sections discuss methodological aspects and outcomes. 
Due to the large number of studies reviewed, the fol-
lowing sections do not cite all studies in their respec-
tive categories. Details from each study are provided in 
Additional file 3.

Methodological aspects
Ideally, models built to predict unobserved data aim to 
minimize prediction errors, bias and overfitting of the 
data. Certain decisions are taken in each step of the pro-
cess and presenting them in an organized and clear fash-
ion is essential to allow readers to assess how reliable the 
estimates are. Based on the conceptual modeling frame-
work presented above, we discuss the most important 
steps of geospatial estimation and details on how studies 
are reporting crucial information for their interpretation. 
These steps include data sources, covariates, modeling 
techniques, resolution, model validation and uncertainty.

Data sources
RMNCH outcomes in LMICs are often estimated using 
data from national health surveys. The Demographic and 
Health Surveys (DHS), a series of nationally representa-
tive household surveys conducted in over 85 countries 
[18], was the leading source of RMNCH information 
used in 59 of the 82 selected studies (72%). Further data 
sources include the Multiple Indicator Cluster Surveys 
[16], Performance Monitoring for Action [17], country-
specific health surveys, censuses, and community surveys 
(main source of information for malaria).

DHS data are available at both administrative (or areal) 
level (e.g. regions, districts, provinces) and point level, i.e. 
the centroids of each primary sampling units (or survey 
clusters). The main difference between areal and point 
data is the aggregation of the data. While areal data are 
always summaries of individual level data, points can 
have both individual and aggregated information. For 
privacy reasons, DHS adds noise to their GPS coordi-
nates, displacing them in a radius of up to 2 km for urban 
areas, up to 5 km for rural areas, and up to 10 km in 1% 
of the rural points. To account for this variation, DHS 
recommends drawing a buffer around each coordinate 
and averaging the neighboring values instead of using a 
precise match [19]. Despite that, only 16 of the 36 stud-
ies that used point-level DHS data reported taking steps 
regarding the displaced coordinates. Gething et  al. [20] 
described the impact of the displacement as modest, 
overall, but varying between outcomes and locations.

Geospatial covariates
Geospatial variables or covariates are sources of infor-
mation from determinants or proxies of determinants 
that are used as predictors in geospatial estimation for 
any given outcome. Obtaining and processing covari-
ates is the most challenging and time-consuming step of 
the geospatial estimation process since the availability of 
this information is often limited to raw satellite indices, 
previous work, and a few initiatives. Covariates are used 
in the model for estimation and prediction and must be 
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prepared accordingly. For estimation, each covariate 
information is extracted to the survey cluster location 
(or the available administrative level for areal models) 
and provided to the model along with the outcome. After 
model fitting, for prediction, a surface layer for each 
covariate is required at the desired resolution. Since these 
covariates often come from different data sources, aggre-
gation is required when resolution is too high (e.g. sat-
ellite information) and interpolation when resolution is 
too low (e.g. creating surface layers from survey cluster 
coordinates).

The average number of covariates used across all 
studies was 9, ranging from 0 to 40. A total of 15 stud-
ies did not include any information on covariates into 
their models. We classified the covariates into seven 

groups: agriculture and livestock, climate, health-related 
interventions and outcomes, remoteness, satellite indi-
ces, sociodemographic, and topography and land cover. 
Covariates related to topography  and land  cover were 
the most common predictors found in 59 studies, fol-
lowed by sociodemographic characteristics (53 studies), 
climate (43 studies) and remoteness (43 studies), as pre-
sented in Table  1. Additional file  3 provides the com-
plete list of covariates for each study and their respective 
classifications.

The optimal number of covariates chosen as predic-
tors, in order to optimize the refined estimation of the 
outcomes of interest, is a frequent topic of discussion. 
The principle of parsimony endorses the use of few and 
strong explanatory covariates to prevent overfitting the 

Fig. 2  Flow diagram of study selection
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Table 1  Summary of the characteristics for the selected studies

All studies Study outcomesa

Malaria Child mortality Malnutrition Vaccination Other 
outcomes

Number of studies 82 34 14 11 8 19

Covariatesa

 Agriculture and livestock 17 3 3 5 4 5

 Climate 43 28 5 5 4 5

 Health-related interventions/
outcomes

24 9 5 5 1 7

 Remoteness 43 19 7 5 5 11

 Satellite indices 19 4 5 3 4 7

 Sociodemographic 53 17 6 11 6 17

 Topography/land cover 59 30 7 10 4 12

 No covariates 15 4 7 1 2 2

Geographic coverage

 Single country 50 26 6 7 2 9

 Multi-country 32 8 8 5 6 10

Temporal component

 No 46 19 2 8 7 11

 Yes 36 15 12 4 1 8

Spatial resolutiona

 Less than 5x5km 23 18 0 1 3 2

 5x5 to 10x10km 20 6 5 5 3 4

 Lower admin. level 30 2 8 6 1 14

 Not reported 12 10 1 1 0 0

Uncertaintya

 Standard deviation map 14 6 1 1 5 2

 Interval map/table 28 12 8 2 0 10

 Relative map 7 0 2 3 0 2

 Other metrics 13 9 2 0 1 1

 Not reported 22 7 3 6 2 4

Modeling techniquea

 Bayesian–MCMC 35 24 3 3 3 2

 Bayesian–INLA 28 4 7 6 3 12

 Classical GLM 17 5 2 2 2 6

 Spatial interpolation 2 0 1 1 0 0

 Ensemble models 12 1 5 4 1 5

Out-of-sample pred.

 Cross-validation 22 3 7 5 4 6

 Hold-out 24 18 2 1 0 4

 Not reported 36 13 5 6 4 9

Model fit metricsa

 Bias 34 12 7 6 4 9

 RMSE/MSE 30 3 7 6 6 12

 Coverage 24 8 6 4 4 5

 DIC/AIC 19 6 3 3 1 6

 MAE 16 7 2 3 2 3

 Correlation 15 11 0 2 1 2

 Other metrics 31 15 4 3 1 9

 None reported 11 5 2 3 1 1

a  These characteristics allow studies to be classified in more than one subgroup

MCMC Markov Chain Monte Carlo, INLA Integrated Nested Laplace Approximation, GLM Generalized Linear Models, RMSE Root Mean Squared Error, MSE Mean 
Squared Error, DIC Deviance Information Criterion, AIC Akaike Information Criterion, MAE Mean Absolute Error
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data. However, strong predictors are rarely available and 
insufficient covariate information may lead to model mis-
specification. This effort in finding the balance reinforces 
the importance of model validation (discussed later in the 
paper).

Modeling techniques
Once outcome and covariate information are prepared, 
they are passed to the chosen modeling technique, 
including random coefficients to account for spatial 
correlation and, sometimes, temporal correlation. The 
Bayesian approach was predominant in the selected 
studies, as 62 of the 82 studies were based on Bayesian 
hierarchical models (Table  1). The main conceptual dif-
ference, in comparison to the frequentist approach, lies 
on how the Bayesian framework interpret probabilities. 
In a frequentist framework, only repeatable events have 
probabilities, while Bayesian frameworks can assign 
probabilities to any event [21]. Since Bayesian frame-
works also consider the distribution of its parameters, 
they generate complex posterior distributions, in which 
exact solutions are often not possible and numerical 
approximation techniques are required to fit the mod-
els. Markov Chain Monte Carlo (MCMC) methods 
approximate the true posterior distribution by generating 
dependent samples from it [22]. MCMC can be consid-
ered a turning point for Bayesian inference, having been 
used for model-fitting in 35 of the 62 studies that relied 
on Bayesian hierarchical models. More recently, Rue and 
colleagues [23] developed an alternative method called 
Integrated Nested Laplace Approximation (INLA), which 
quickly became popular given that it is much faster and 
yields very similar results compared to MCMC. Despite 
the first identified studies using INLA being carried out 
only in 2014, the method has already replaced MCMC in 
28 studies. Frequentist estimation was applied in 17 stud-
ies through classical generalized linear models. Only two 
studies used spatial interpolation methods such as krig-
ing [24] and kernel density estimation [25].

Recent studies have started using an ensemble 
approach, known as stacked generalization, to improve 
model performance [26]. Briefly, this strategy consists of 
fitting several models (usually each model uses a differ-
ent modeling technique), generating intermediate pre-
dictions. These predictions are then used as input to a 
second model. The use of multiple modeling techniques 
allows any complex non-linear effects of the covariates 
to be captured, while the final predictions are estimated 
using a robust, consolidated modeling technique. All 11 
studies following this approach [27–37] used a Bayesian 
hierarchical model fitted using INLA for the final predic-
tions. Only one study relied on ensemble models and did 
not perform stacked generalization [38].

In addition to borrowing strength from covariance 
structures through space, spatio-temporal models can 
also benefit from these structures through time. The 
inclusion of a temporal component was identified in 36 
studies as observed in Table 1. In 34 out of the 36 studies, 
this approach attempted to evaluate changes over time. 
These effects were primarily modelled using conditional 
autoregressive models and stochastic partial differentia-
tion equation as described by Blangiardo et al. [39].

Resolution
Estimates are typically generated at two different levels 
of aggregation: grid cells or country’s administrative divi-
sions. At grid cell-level, the entire country is divided into 
an equally sized grid and predictions are made for each 
cell individually. A total of 55 out of the 82 studies opted 
for gridded-estimates (Table 1). Apart from three studies 
[40–42], the approximate cell size (grid) for all reported 
resolutions ranged from 1 × 1 km to 10 × 10 km, with 5 x 
5 km being the most common one. Smoothed maps were 
presented by 12 studies without specifying the originally 
estimated resolution. Estimates for districts, counties, 
provinces and other low administrative divisions were 
produced by 30 studies (37%). These administrative level 
estimates are often produced from the grid level esti-
mates through population-weighted aggregation using 
gridded population data from, e.g., WorldPop [43]. Only 
five of the 82 studies presented estimates at both grid 
cell and administrative levels. There is much discussion 
regarding the ideal level of aggregation, as it depends on 
multiple factors including the outcome, the objective of 
the analysis, how decentralized decision-making is within 
the country and the trade-off between precision and res-
olution [41, 44].

Model validation
A good predictive model is a model capable of repro-
ducing the process that generates the outcome. How-
ever, depending on the outcome, available covariates and 
model specification, its performance can vary substan-
tially [45]. Models should be validated against data that 
was not used in its construction. Otherwise, the model 
can learn the data instead of their underlying structure, a 
phenomenon known as overfitting the data. The simplest 
choice for out-of-sample predictions is known as the 
hold-out method, which splits the data into two subsets—
a training subset used for model fitting and a test subset 
used for validation. This approach was found in 29% of 
the studies (Table  1). However, splitting the data and 
ensuring geographical representativity in both samples is 
an overlooked challenge. Seven studies [47–53], though, 
attempted to overcome this limitation using a declus-
tering method, which gives less weight to observations 
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geographically clustered when drawing the samples [54]. 
An alternative method for out-of-sample prediction is 
the n-fold cross-validation, found in 22 studies. The algo-
rithm divides the data in “n” parts of equal size (which 
can be done in a spatially structured or random manner), 
leaving one for validation and using the remaining to 
build the model. This process is repeated until each fold 
is used for validation and the average of the combined 
measures is taken. Cross-validation is particularly useful 
when data is limited and holding out data could compro-
mise the model performance, while the drawback is that 
it must fit one model for each fold, drastically increasing 
the processing time. Nearly half of the studies (44%) did 
not report on any validation method.

Within the out-of-sample data, there are several met-
rics that can be calculated and reported to assess the 
validity of the model predictions. As shown in Table  1, 
bias was the most reported validation measure, present 
in 34 studies (41%). Bias is the average of the difference 
between the observed and the predicted value. The mag-
nitude of the prediction errors was often reported using 
the root mean squared error (RMSE) or the mean abso-
lute error (MAE), found in 30 and 15 studies, respec-
tively. RMSE and MAE are both positive values indicating 
how much, on average, the model predictions differ from 
the observed results.  They differ on how deviations are 
handled: RMSE takes deviations squared while MAE 
ignores the signal. This makes RMSE more susceptible 
to the impact of high magnitude prediction errors (such 
data points are often referred to as outliers) [46]. A total 
of 19 studies presented Deviance Information Criterion 
(DIC) or similar metrics during model selection or vali-
dation. While DIC is useful for model selection, it has no 
direct interpretation and cannot be used to compare dif-
ferent studies. Additionally, several studies reported the 
achieved coverage within credible intervals [24] and the 
correlation between predicted and observed values [16].

Presentation of uncertainty
As much as the most precise estimates are desirable, 
there is always a degree of uncertainty in predictions 
made. While geographically disaggregated point esti-
mates are easily interpretable when presented in a map, 
the related uncertainty is much harder to present in an 
intuitive way. Uncertainty is a complex multi-layer con-
cept and it exists in every step from data collection to the 
modeled estimates. For the sake of this study, we consid-
ered uncertainty as the measures of variability associated 
to the estimates, since a complete definition includes 
measurable and unmeasurable components, sampling, 
modeling strategies, and is out of the scope of this study.

Visualization approaches to present uncertainty in a 
clear, comprehensive, and interpretable manner are still 

to be proposed. Bayesian models, for instance, produce 
full posterior estimates that can be summarized in mul-
tiple ways. However, there is no visualization approach 
that can fully address the challenges of communicat-
ing and using uncertainty and, as a result, the literature 
clearly lacks standardization.

Options for presenting uncertainty are tied to the cho-
sen resolution. At the administrative level, where there 
is a smaller number of divisions, uncertainty can be 
described using maps or tables. On the other hand, grids 
of high resolution can only be represented in maps due to 
the large quantity of estimates. Uncertainty intervals and 
standard deviation maps and tables were the most com-
mon approaches, found in 28 and 15 studies, respectively. 
There were also seven studies presenting qualitative 
measures of uncertainty (e.g., low or high uncertainty). 
Further approaches include: coefficient of variation [55, 
56], exceedance thresholds [57, 58], probability of being 
correctly classified [48, 50, 52] and Coffey-Feingold 
Bromberg metric [31]. A total of 22 studies (27%) did not 
present any measure of uncertainty (Table 1). Aside from 
the numerous ways of expressing uncertainty, it has been 
exclusively reported in supplementary files of 23 out of 
the 60 studies (38%) that presented uncertainty, putting 
its relevance in check.

Maps with the limits of the uncertainty intervals are 
often presented in two separate figures, demanding more 
space, and only covering a best–worst case scenario. 
Some studies use the width of the interval as an alterna-
tive, which is limited when the probabilities are close to 
zero or 1. Standard deviation maps are harder to inter-
pret, especially for non-specialist readers. Lastly, quali-
tative measures of uncertainty are likely the easiest to 
interpret, although defining what is low or high uncer-
tainty is arbitrary.

Key aspects for interpreting geospatial studies
Maps are long used for presenting geographically dis-
aggregated estimates and are often easily interpretable. 
However, legend scales may be misleading, especially 
when intervals of different widths are grouped and 
presented together, or the amplitude is too narrow 
or too wide. These caveats are particularly important 
when several maps are presented in sequence and the 
reader may assume the legend scales are the same.

Every modeled estimate carry assumptions and 
uncertainties, and several aspects can be observed to 
assess their reliability. For instance, data sources must 
provide sufficient information for models to reproduce 
the occurrence of the outcome. The data must also 
come from reliable sources and be temporally close 
to the objective of the study and the covariates used 
in the process. In the case of multiple data sources 
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and temporal assessment, constant change over time 
is often an assumption that needs to be taken into 
consideration.

Models tend to assume the input data are correct, so 
any estimates from a good predictive model can only 
be as accurate as the quality of the data sources. As 
discussed in previous sections, several metrics can be 
reported and interpreted to evaluate the validity of the 
predictive model. Bias, the most reported validation 
measure, indicates whether prediction errors are sys-
tematically leaning towards any direction. Therefore, 
an unbiased estimator should present bias close to 
zero. However, the scale of the outcome must always 
be considered when interpreting these measures. For 
instance, a bias of 1.5 in settings where the average 
mortality rates are around 3 is huge (50% of the point 
estimate), but for mortality rates close to 150, the rela-
tive importance of the same bias is much smaller (1% 
of the point estimate). The same applies for inter-
preting measures of the magnitude of the prediction 
errors, such as RMSE and MAE. For coverage indica-
tors (bound between 0% and 100%), RMSE or MAE 
values of 2 indicate the model deviates from the true 
value, on average, by 2 percentage points.

Incorporating uncertainty in decision-making is 
often a major challenge. The interpretation of the 
estimates requires changes in the thought process to 
consider probabilities rather than an absolute, fixed 
value. Non-experts tend to depend on heuristics rather 
than formal statistics when taking decisions [59]. This 
raises a question on whether considering uncertainty 
leads to better decisions or simply discredits infor-
mation in which uncertainty estimates are high [60]. 
Associated credible intervals can be interpreted as 
that we are confident (usually 95% confident) that the 
true estimate is within the interval. Therefore, smaller 
intervals reduce the probability of our estimate devi-
ating from the true value. The standard error can be 
roughly interpreted as how precise the sample mean 
estimate is in relation to the population mean.

Outcomes
Around 30 different outcomes were estimated using geo-
spatial approaches among the selected studies. We classi-
fied them into five groups based on their frequency and 
similarity: malaria, child mortality, malnutrition, vacci-
nation, and other health-related outcomes. Within each 
family of outcomes, their specificities are highlighted and 
the summary of characteristics for all studies and by out-
come is presented in Table 1.

Malaria
Malaria-related studies could be considered the pioneers 
in RMNCH geospatial modeling with a large contribution 
to this field. It took nearly a decade for studies of other 
RMNCH outcomes to start using geospatial estimation 
to increase the granularity of their available data. The 
first identified studies are dated to the early 2000’s [61, 
62], despite other spatial statistics in the field of malaria 
having been used for several years before [63]. Malaria 
is strongly affected by environmental factors. The mos-
quitoes of the anopheles species require certain climatic 
conditions to develop themselves and act as transmission 
vectors for the disease [64]. This geographical depend-
ence along with the burden of the disease led malaria to 
be the most studied outcome with 34 out of the 82 stud-
ies [38, 42, 47–49, 51–53, 56–58, 61, 62, 65–83].

Most of the information for malaria in LMICs comes 
from combining multiple malariometric surveys con-
ducted at specific locations. Several projects, such as 
MARA [84] and the Malaria Atlas Project [85], have 
worked on putting together geo-referenced malaria sur-
vey data, allowing researchers to use the pre-processed 
databases. These surveys were used in 21 of the 34 studies 
that focused on malaria. Despite concerns over malario-
metric surveys being carried out only in endemic areas of 
high prevalence, evidence shows they are well geographi-
cally distributed in various settings [47]. A secondary 
source of information for malaria are nationally repre-
sentative surveys, either designed for several RMNCH 
indicators, such as the standard DHS surveys, or focused 
on malaria as in the Malaria Indicator Surveys, also car-
ried out by the DHS program. A total of 14 studies relied 
on these surveys.

Although the malaria burden is not limited to children, 
they are the most affected subset of the population due 
to the lack of post-infection immunity [86]. Malaria indi-
cators were reported as malaria prevalence, parasitemia 
risk or number of infected children. Both children under-
five and the standardized age range of 2 to 10 years were 
the most common age subgroups, as observed in 14 and 
12 studies, respectively. A few studies presented esti-
mates for other subgroups such as: 6–59  months [79], 
under-10 years [61], under-16 years [71], 1–10 years [66, 
87] and 1–14 years [65].

Different from other outcomes, malaria studies prior-
itized high-resolution estimates over small administrative 
units. The only two studies that presented county [58] 
and regional [72] level estimates also presented estimates 
at finer resolutions. Single country studies were predomi-
nant with 77% of the geographical coverage, while 82% 
opted for the Bayesian approach for modeling.
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Childhood mortality
Child survival is a central goal of maternal and child 
health interventions and it is considered both a health 
indicator and a measure of human development [88]. 
Reducing child mortality rates is a long-term priority 
defined by international organizations and highlighted 
in both the Millennium Development Goals and the 
SDGs [89]. Even in high mortality settings, the death of 
a child is a rare event, thus requiring larger samples sizes 
in comparison to other RMNCH indicators. Among the 
reviewed studies, 14 were focused on child mortality.

Within child mortality studies, we identified ten studies 
focusing on all-cause mortality and four studies present-
ing cause-specific deaths. All ten studies reporting on all-
cause childhood mortality estimated under-five mortality 
rate, while a few studies also presented estimates for neo-
natal [30, 90] and infant [90, 91] mortality rates. For 
cause-specific mortality, deaths by malaria [38], diarrhea 
[32, 35] and lower respiratory infection [33] were studied.

Most studies, 12 out of 14, assessed changes over 
time—a major focus for mortality—most likely relating 
to monitoring development goals. In terms of resolu-
tion, six studies aimed at reaching smaller administrative 
units such as districts or counties [35, 55, 92–96], six pre-
sented gridded estimates [25, 30, 32, 33, 38, 91] and one 
employed both approaches [90]. As with all outcomes, 
Bayesian models were predominant, used in 10 out of 14 
studies. Four studies attempted to develop or enhance 
methods to estimate under-five mortality.

Malnutrition
Each year, 3.1 million deaths of under-five children are 
directly attributable to undernutrition in the form of 
stunting, wasting and micronutrient deficiencies [97], 
and overweight in children is an increasing problem. A 
total of 12 studies focused on malnutrition.

The burden of stunting, wasting, underweight and 
overweight was estimated for the entire African conti-
nent [28] and in all LMICs [27, 37]. There were also sev-
eral single country studies that account for and focus on 
local specificities as done in Bangladesh [98], Afghani-
stan [99], Cambodia [100], India [36], Mexico [101] and 
Ethiopia [24, 102]. Five studies generated estimates at 
district or province level [98–100, 102], four studies at 
1x1km [45], 5x5km [27, 28] and 10x10km [103], and two 
studies at both 5x5km and administrative level [36, 37]. 
Six studies modeled their outcomes using Bayesian mod-
els through INLA.

Among all outcomes, uncertainty was least reported on 
studies focusing on malnutrition, available in only half of 
the studies.

Immunization
Vaccines save the lives of millions of children every year, 
and despite being one of the most cost-effective health 
interventions, many settings have seen coverage levels 
stall or even decline in recent years [104]. For measles, 
which is highlighted in six of the seven immunization 
studies, many outbreaks occurred globally in 2018 and 
2019, mainly due to lack of access and anti-vaccination 
movements [105–107].

Geospatial modeling of immunization started rela-
tively recently, since all identified studies were published 
from 2015 onwards. Possibly due to being very recent, 
most of them carried out very comprehensive modeling 
approaches. Six of the eight studies produced estimates 
for at least three countries and only two failed to report 
uncertainty measures. The granularity pursued was also 
very high, having three studies at 1x1km [108–110], 
three studies at 5x5km [31, 111, 112] and one at 10x10km 
[113]. Perhaps due to being the first, Pramanik et al. [114] 
was the only vaccination study which focused in a single 
country, aimed at lower administrative units rather than 
gridded estimates, and one of the two studies that did not 
report uncertainty measures.

Other RMNCH outcomes
The use of geospatial approaches to produce estimates 
for small areas has reached a variety of outcomes. Within 
reproductive health, we identified four studies focus-
ing on contraception [45, 115–117] and two studies on 
undesired adolescence pregnancies [118, 119]. From 
pregnancy to child birth, four studies focused on ante-
natal care, skilled birth attendance, c-section and post-
natal care [40, 41, 120, 121]. Diarrhea [32, 122, 123] and 
respiratory infections [33] were the focus of a total of 
seven studies, as they are still among the leading causes 
of death for children in the poorest countries. One study 
also attempted to map exclusive breastfeeding [34].

Conclusions
The field of geospatial estimation focused on RMNCH 
outcomes is expanding and the number of published 
studies has increased more rapidly since 2014. Bayesian 
hierarchical models have taken place as the preferred 
modeling technique, but this is a continuously evolving 
area. More recently, ensemble approaches using several 
different models that are put together with a Bayesian 
model have been increasingly used and have the potential 
to become the approach of choice. The main data sources 
are likely to remain the same, DHS with a special place 
among national health surveys, especially that they have 
been putting a lot of effort in providing geolocated covar-
iates available already harmonized with the surveys [125].
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Geospatial models are complex and tend to produce a 
large number of estimates. Therefore, a validity assess-
ment of how assumptions hold, the estimates precision 
and the model mean error should always be done and 
presented. These characteristics should be evaluated 
out-of-sample using one of the several approaches pro-
posed in the literature, with cross-validation being the 
most efficient in terms of data use. However, with such 
complex models, fitting a model repeatedly can demand 
considerable processing power. Nonetheless, this is a key 
step to show that the results presented are stable and 
represent the underlying process in study. Model valida-
tion needs to be clearly presented both in terms of how 
it was done and its results. In our review, a considerable 
number of studies failed to present clear and convincing 
model validation—36 out of 82 —what makes the results 
much harder to interpret.

Other important aspects of geospatial modeling are 
the resolution of the estimates and how these are pre-
sented in terms of both point estimates and their uncer-
tainty. The objective of the work is central to choosing 
the resolution or the type of aggregation to be used. A 
study describing the spatial distribution of an outcome or 
showing associations with geographical aspects can pre-
sent very high-resolution estimates. On the other hand, 
if the aim is to support health policy decisions, estimates 
matching health districts, or geographical units where 
policies and programs are decided and implemented, are 
likely to be much more useful. The presentation of esti-
mate uncertainty is also essential. However, we have not 
identified in the literature a clear and robust approach, 
as this represents a real challenge. Different measures 
of uncertainty have been used, as well as a variety of 
approaches of presentation – from simple to compli-
cated. Given its importance, it seems to us that simpler 
and more direct visualization approaches could be used 
in the main body of the paper, while full results could be 
reported in the supplementary material.

As a final comment, given the often-large number of 
maps and diagrams presented, special attention has to 
be devoted to comparability of the scales used, color 
schemes, and even the map projections. The results 
need to be presented in an intuitive and understand-
able fashion so that non-specialists can grasp and make 
use of such relevant estimates. Authors need to put as 
much effort in the clarity of their presentations as they 
invest in the complex process of geospatial estimation.

This study covers the main methodological aspects 
that are part of a standard conceptual modeling frame-
work adopted by the literature. However, many details 
that are lightly discussed here could be the focus of 
further studies such as a thorough evaluation and 
comparison of modeling techniques, covariates, and 

uncertainty. In addition, concern should be raised on 
how far these models can be extended, given the expan-
sion of the field to over 30 different outcomes. Since 
predictions are based on space and time correlation 
and explanatory variables, producing fine spatial scale 
estimates may not be feasible for all outcomes [45].

The authors encourage future studies focused 
on modeling RMNCH outcomes using geospatial 
approaches to make uncertainty presentation and 
model validation as an integral part of their studies. 
In light of the issues of handling uncertainty, incorpo-
rating it in the discussion of results could assist read-
ers in their interpretations and facilitate the practical 
application of geospatial approaches for policy making 
towards improving RMNCH in LMICs.
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