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Abstract 

Background: The health burden in developing world informal settlements often coincides with a lack of spatial data 
that could be used to guide intervention strategies. Spatial video (SV) has proven to be a useful tool to collect envi-
ronmental and social data at a granular scale, though the effort required to turn these spatially encoded video frames 
into maps limits sustainability and scalability. In this paper we explore the use of convolution neural networks (CNN) 
to solve this problem by automatically identifying disease related environmental risks in a series of SV collected from 
Haiti. Our objective is to determine the potential of machine learning in health risk mapping for these environments 
by assessing the challenges faced in adequately training the required classification models.

Results: We show that SV can be a suitable source for automatically identifying and extracting health risk features 
using machine learning. While well-defined objects such as drains, buckets, tires and animals can be efficiently clas-
sified, more amorphous masses such as trash or standing water are difficult to classify. Our results further show that 
variations in the number of image frames selected, the image resolution, and combinations of these can be used to 
improve the overall model performance.

Conclusion: Machine learning in combination with spatial video can be used to automatically identify environmen-
tal risks associated with common health problems in informal settlements, though there are likely to be variations in 
the type of data needed for training based on location. Success based on the risk type being identified are also likely 
to vary geographically. However, we are confident in identifying a series of best practices for data collection, model 
training and performance in these settings. We also discuss the next step of testing these findings in other environ-
ments, and how adding in the simultaneously collected geographic data could be used to create an automatic health 
risk mapping tool.
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Introduction
Informal settlements remain one of the greatest public 
health challenges due to the nexus of a variety of disease 
causing systems (such as extreme poverty, overcrowd-
ing, lack of local services and health care), and generally 
poor data to help guide solutions. While many of these 

problems might seem unassailable, there are advances 
that can be made in improving the way that ground level 
data are collected, processed and utilized by local area 
public health workers and epidemiologists. In this paper 
we advance such data acquisition and utilization using 
machine learning. More specifically we utilize ground-
level spatially encoded video and show how environ-
mental risks such as mud and standing water [32] can be 
automatically as a precursor to near-real time mapping.
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Informal settlements should not be considered as 
homogenous environments as risks vary considerably 
based on factors such as local elevation, ground type 
and slope, and local flooding risk. There is also temporal 
dynamism to these risks, so being able to spatially target 
prevention or mitigation efforts is vital in fully leverag-
ing limited resources [36]. While different solutions have 
been utilized to improve on-the-ground spatial detail, 
such as participatory mapping approaches [16, 35], or 
through crowd sourcing platforms such as Map Kibera 
[8], these tend to be cross sectional in nature because 
of the logistical problems faced during data collection. 
Indeed, the data deficiencies found in such environments 
are well documented, and even when on-the-ground 
technological advances are utilized, meaning solutions 
designed to collect the required risk data for localized 
mapping, they tend to lack the sustainability and granu-
larity required for analysis and intervention [19]. Add-
ing further complexity is that these environments are 
dynamic in nature; the dramatic difference encountered 
between wet and dry seasons being one obvious example 
[46]. Further dynamism occurs with critical infrastruc-
ture, for example water points (W.Point) or toilets [26], 
require frequent updating, not only in terms of shifting 
locations [4, 9, 9, 13, 13] but also on how their quality and 
risks vary temporally [10].

One such previously employed technological advance 
used to map health risks, and to provide micro geo-
graphic support for more traditional epidemiological sur-
veillance in these environments, is the spatial video (SV) 
[11, 12]. This field technology consists of a global posi-
tioning system (GPS) enhanced video, which for infor-
mal settlements is usually hand carried through the study 
space [43]. Each resulting video frame has an associated 
GPS coordinate attached, meaning the media becomes a 
digitizing source [10], with water points, drains, standing 
water, mud, and even trash being mapped [4]. Conceptu-
ally, this approach can support local public health opera-
tions, or just serve as a basic mapping tool for the local 
populace [17]. Yet while it has proven successful in lim-
ited operation, the previously identified problem of scal-
ability and sustainability still remain.

Yet this method and these data are worth further explo-
ration to investigate how they can be made more useful 
to local stakeholders. As an example of previous SV use, 
monthly water samples were taken to assess localized 
bacterial risk in Port-au-Prince, Haiti. This epidemio-
logical study which resulted in spatio-temporal mapping 
of water “risk”, also included concurrent SV surveys to 
record the associated environment [9–11, 13]. These 
additional visual records provided alternative expla-
nations for local temporal variations in fecal coliform 
counts which otherwise would have been assumed to 

be caused by environmental or meteorological factors. 
For example, the SV captured the decaying nature of the 
concrete around a well, or the amount of standing water 
where people would rest their water buckets, both of 
which can contaminate the water. While the water sam-
ples provided vital biological insights into health risk the 
SV contextualizes those locations with details that can 
explain causations and patterns. However, the mapping 
process involves a labor intensive viewing of the video 
and then digitizing risks into a geographic information 
system (GIS) layer. If SV were to be used as a more sus-
tainable method for map creating and updating, a two-
step process of automatically identifying the risk features 
and then mapping them is quintessential. In other words, 
reducing the human effort involved. In this paper we 
consider the first step in the process, automated risk fea-
ture extraction using machine learning and identifying 
the specific complexities associated with data collected 
from these environments.

Recent developments in the area of machine learning, 
especially due to the revival of deep neural networks, 
offers opportunities to tackle challenges such as image 
classification [49], object detection [41], semantic seg-
mentation [31], speech recognition [24], machine trans-
lation [3], and natural language processing [23] With the 
development of a particular class of deep neural networks 
called convolution neural networks (CNN) [29], consid-
erable progress has been made in image classification, 
object detection, and semantic segmentation. Compared 
to traditional fully connected multilayer perceptron 
architectures where every neuron is connected to every 
other neuron, CNN supports weight sharing where a 
neuron is connected only to the neurons that are within 
its receptive field. Along with being highly memory effi-
cient, this type of architecture can capture fine scale spa-
tial and temporal dependencies when compared to fully 
connected architectures. This property of CNN makes it 
particularly attractive for tasks involving both 1 dimen-
sional (for example time series data), and 2 dimensional 
gridded data (image data). The key to success of CNN or 
any other deep neural network architecture is the avail-
ability of large training datasets (which helps in better 
generalization), and high performance computational 
resources. While the availability of high performance 
computational resources continues to improve (especially 
owing to the development of GPU (Graphical Processing 
Unit) and TPU (Tensor Processing Unit) based architec-
tures), the availability of large training datasets is always 
a domain specific challenge. As previously stated, not 
only do informal settlements pose considerable health 
problems, but they are also notoriously data poor, mean-
ing that there is scant training data. The use of remotely 
sensed imagery as a data source to utilize machine 
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learning including CNN has been tried for various 
health risks prevalent in informal settlements all around 
the world [1 18, 25, 30, 44, 48, 50]. Of more relevance 
to this project, at least in terms of the data source if not 
the same environment, is the analysis of high resolution 
“neighborhood” imagery from sources such as Google 
Street View (GSV). For example, Rad et al. [37], in their 
work on localizing and classifying waste on the streets, 
used an acquisition system mounted on a vehicle to col-
lect street images which were then input for a deep CNN 
to identify litter and trash. Chow et al. [6], utilized deep 
CNN on GSV to evaluate built environment characteris-
tics such as building density, aesthetics, disorder, pedes-
trian safety, and bicycle infrastructure. Mooney et al. [33] 
also extracted physical disorder from GSV images, while 
Law and colleagues [28] developed Street-Frontage-Net 
to evaluate the quality of street frontage for signs. The 
gap, therefore, is that the type of data available for infor-
mal settlements is not of the type found to be most useful 
for identifying street-level risks such as trash, standing 
water and water points.

There is no easy solution to solve this gap; online visual 
data suitable for automated image classification in infor-
mal settlements is scarce, especially when the additional 
problem of how these environments change geographi-
cally; similar settlements in Haiti and Ghana have similar 
problems and features, but the details needed for image 
classification vary considerably. While remotely sensed 
imagery can be improved with other data sources [18] 
such as local censuses, there is still a need to contextu-
alize local environment at the street scale [45] with on-
the-ground imagery to improve the generalization and 
accuracy of machine learning models. While normally 
collecting these types of data are logistically challenging, 
the project team for this study has been using SV in mul-
tiple environments and time periods, amassing a consid-
erable library of granular environmental imagery which 
can be used to explore various aspects of model training 
for these types of settings.

Not only does such a library allow for experimentation 
with and improvement in image classification, but also 
input considerations can also be quantified, such as how 
localized challenges in field data collection affect input 
data quality and prediction. This is important as it is not 
realistic to think that there is a set of clean images read-
ily available for any environment, and where collection 
occurs (for example in tight urban corridors or within 
drainage channels), the perceived safety of the data col-
lector, and variations in camera make and type can all 
lead to issues such as angle of view, considerable move-
ment within frame and general image quality. If SV is to 
become more sustainable translational method for local 
mapping, it is important to see how much of a problem 

these variants cause for the predictive model. This paper 
addresses these points by using the SV archive to exam-
ine the effectiveness of machine learning on ground level 
imagery, for multiple informal settlements in Haiti. Our 
results, which are focused on identifying environmental 
health risks, are a first step towards using automatic risk 
detection as part of a real-time mapping tool.

Methods
With the recent advancements in CNN, various new 
object detection algorithms have emerged including 
R-CNN [22], Fast R-CNN [21], Faster R-CNN [42], and 
YOLO (You Only Look Once) and its variants [37–38]. 
R-CNN and its variants uses a two-step process for 
object detection. In the first step, interesting parts of the 
image are selected through a Regional Proposal Network 
(RPN) technique, and in the second step a CNN is used 
to classify an object from the regions selected by RPN. 
Compared to the two-step process of R-CNN, the YOLO 
method [39], unifies the target localization and object 
detection as a single regression problem. A single neural 
network predicts the bounding boxes and class probabili-
ties for all the objects. As it’s a single step process with 
the algorithm traversing through the image only once, 
YOLO is much faster when compared to R-CNN and its 
variants. Subsequent versions of YOLO (YOLOv2 [38] 
and YOLOv3 [40]) improved the method, having more 
convolution layers, has better accuracy and efficiency. For 
this study we have used YOLOv3 as the object detection 
algorithm.

YOLOv3 architecture
YOLOv3 utilizes Darknet-53 [40] as its backbone net-
work for feature extraction. Each image in the train-
ing set, for example the muddy water (M.Water) seen 
in Fig. 1, is divided into a 2D matrix of NxN (N usually 
7) grid. The network outputs five bounding boxes for 
each grid cell along with an “objectness” score for each 
bounding box. It also outputs K class probabilities where 
K represents the total number of classes. Thus each grid 
produces a total number of 25 + K (5 × 4 + 5 + K) values. 
Rather than predicting the absolute coordinates of the 
bounding box centers, YOLOv3 predicts an offset rela-
tive to the coordinates of the grid cell. For each grid cell, 
YOLOv3 is trained to predict only the bounding boxes 
whose center lies in that grid cell. Confidence for predic-
tions in each of the grid cell is given by Eq. 1.

Here  pr(Object) is 1 if the target is in the grid and 0 
otherwise. IOUtruth

pred (intersection over union) is defined as 
the overlap ratio between the predicted bounding box 

(1)
Confidence = pr

(

Object
)

∗ IOUtruth
pred , pr

(

Object
)

∈ {0, 1}



Page 4 of 17Ajayakumar et al. Int J Health Geogr            (2021) 20:5 

and the true bounding box (Eq. 2). The confidence pro-
vides estimates about whether a grid contains an object 
and the accuracy of the bounding box that the network 
has predicted.

In-order to reduce the detection error, anchor boxes 
which are a priori bounding boxes (5 for each grid), are 
generated by using a k-means algorithm applied to the 
height and width of the training set of bounding boxes. 
These make the network more likely to predict appropri-
ate sized bounding boxes which also speeds up training 
[40]. For training, YOLOv3 uses sum-squared error in 
the output as the optimization procedure. The loss func-
tion is a combination of errors on the bounding box pre-
diction, object prediction, and class prediction (Eq. 3).

Generating training images for YOLOv3
The schematic flow diagram for the entire SV object 
detection pipeline is shown in Fig. 2. In order to address 
the problem of varying image quality on model train-
ing a bespoke standalone software (Frame Selector) was 
developed to mine the SV image archive. This software 

(2)IoU =
Soverlap

Sunion

(3)TotalLoss = Errorcoord + Erroriou + Errorcls

facilitated user selected images to be extracted as single 
frames for each of the environmental category types. As 
each frame is associated with a particular time, that same 
time can also be used to extract the corresponding frame 
from the source video. The software can be downloaded 
from https ://cwru.box.com/s/iz8nl 1ijqw zpr10 94b66 rivkl 
lg924 9j

Image labelling and training
The frames extracted using the Frame Selector software 
is further labelled using the Object Detection Client soft-
ware (Fig.  3). Each extracted frame is labelled with five 
values including the center coordinates (x, y), the width 
(w) and height (h) of the bounding box for the object 
(normalized to a value between 0 and 1), and the class to 
which the object belongs. The details of all the images, 
its labels and bounding box dimensions, are stored as 
a JavaScript Object Notation (JSON) file for further 
retrieval and processing.

A frame “packet” containing all the image frames, all 
corresponding labels, separate text files indicating the 
images used for training and the images used for valida-
tion, and a configuration file are generated once the label-
ling process is finished. The frame “packet” is sent to the 
training server for processing and the resulting model file 
is saved in a common repository.

Fig. 1 The YOLOv3 model. Object detection is posed as a regression problem

https://cwru.box.com/s/iz8nl1ijqwzpr1094b66rivkllg9249j
https://cwru.box.com/s/iz8nl1ijqwzpr1094b66rivkllg9249j
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Prediction
For prediction and inference, a video file is converted 
into packets of images based on the frequency param-
eter set by the user. As an example, if the selected fre-
quency parameter is 5 then every 5th frame of the video 
is stacked together to form packets of 20 images. The 
frequency parameter can act as a trade-off between the 
image processing time and the overall detection accu-
racy. A low frequency parameter would select more 
image frames which in-turn increases the processing 
time though improving the detection accuracy. Each 
packet, along with the information about the trained 
model are sent to the prediction server as a POST 
request in an asynchronous fashion. The prediction 
server loads the training model and runs inference on 
the image packets to generate a single JSON file con-
taining the predictions for each frame. The prediction 
results include the center (x, y) of the object detection 
box, its width and height along with the class and the 
probability of the object being successfully labelled. 
On receiving the results from the prediction server, the 
image frame along with the object prediction as rectan-
gular box are displayed (Fig. 4).

Data and experimental setup
Beginning in October 2016, monthly water samples were 
collected from public water points drainage channels or 
the coast-land interface in multiple informal settlements 
of Port-au-Prince, Haiti [9, 13]. Along with the water 
samples, the field team also collected micro environmen-
tal surveys using SV [9, 13], primarily of the water sam-
ple locations but also along the paths connecting them. 
These routes contained multiple examples of environ-
mental factors commonly associated with different dis-
ease risks,muddy/standing water (for example dysentery, 
open drains (for example cholera) trash (for example 
malaria), and animals (for example leptospirosis). After 
approximately three years of data collection, the result-
ing SV archive provided an excellent resource to extract 
images representative of health risk features for this area, 
in category types suitable for model training [2, 5, 20]. 
In addition, the category “animal” utilized a pre-existing 
model trained on OpenImages [27] for prediction with 
no additional training. To summarize, example images for 
each of the environmental risk categories were extracted 
and used to train the model for that feature. A second set 

Fig. 2 Schematic flow diagram for object detection pipeline. The top section indicates training workflow while the bottom section indicates 
prediction workflow
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Fig. 3 Object Detection Client software for labelling training images. A rectangular bounding box is drawn around a risk feature, in this example a 
drain, and the object is then labelled from a set of drop down options. The table on the right represents the models that are already trained

Fig. 4 Prediction screen for the software. The frame window displays the image along with the results. The rectangular box represents the 
predicted bounding box. The timestamp selection dropdown indicates the associated time sections in the video and the frame selection dropdown 
indicates the corresponding frames in the video
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of videos were then manually classified for the presence 
of those same types of environmental risks. These were 
then used to check the accuracy of the predictive model.

The second set of 12SVs used to assess the accuracy 
of the different models were chosen to evaluate differ-
ent types of neighborhoods/environments, different time 
periods for the same neighborhood, and variation in image 
type and quality. These included coastal reclaimed land 
(A, C and D), variations in road and building type includ-
ing paved densely packed streets (B), and varying eleva-
tions (E).1 The majority of the SVs were collected while 
walking with either an extreme sports camera (a Contour 
Plus 2), or body cameras (MIUFLY or Patrol Eyes). The 
quality of the video was generally good (1280px), though 
the camera angle varied from being pointed downward as 
the person walked the route, to being aimed specifically at 
a feature being captured such as a water point. As a result, 
the video angle also varied resulting in a set of non-stand-
ard training images that would, probably, be rejected for 
most developed world projects.

For the first round of testing, image resolution was set 
at 608px (same as the training resolution), and the frame 
frequency parameter was set to 10 frames (every 10 
frames would be used for prediction). After the predic-
tion, every packet of video frames containing 100 images 
were analyzed for positive matches in concordance with 
the datasheet of risk matches for the video. Therefore, if 
a water point is labelled at time 12 min and 45 s, the cor-
responding video frame is analyzed for a match (Fig. 4).

A frame frequency parameter was introduced to extract 
frames from the video at different intervals to reduce 
processing time. In order to understand the impact this 
skipping of image frames might have on object detection, 
we performed a second round of testing with a frame 
window concept, where all the frames that fall within an 
interval window are selected for object detection. As an 
example, if there is an object occurring at 12 min and 45 s 
in an image frame and the frame window size is set to 60 
frames, then all 30 frames behind and ahead of the times-
tamp are used for object detection. In-order to extract the 
relevant frames, the timestamp is converted to a frame 
number by multiplying the frame rate (number of frames 
per second) with the video time in seconds. Unlike with 
the first round, only frames that have a potentially match-
ing object are checked for a positive match.

To further understand the impact of image resolu-
tion on prediction, a third round of testing was con-
ducted with varying image resolutions including 224px, 
416px, 832px, 1024px, and 1280px (most of the original 
images are at this resolution). Those images that were 

unclassified for the first two rounds (with 608px) were 
only used in the third round. Along with the prediction 
results, other performance measures such as total pro-
gram runtime, variation in performance with frame stack 
size and variation of run time and memory utilization 
with changes in image resolution were also noted.

Results
The total number of images and objects for each category 
is shown in Table 1. The training to validation ratio was 
set to 10:1 as the number of images was still low for an 
object detection task (generally ranges well above 1000 
images for a single class), and the split was done ran-
domly. While the images in Fig. 5 are examples utilized 
for training, it was found that there was considerable 
variation within each category, both in terms of image 
type and size, including overlaps between categories. For 
example, Fig. 5a, b could both be labelled as a drain. The 
images in Fig. 5c are two different size drains, though not 
shown here are the engineered drains with distinct con-
crete sides, and more naturally occurring channels which 
might also be categorized as a stream. Water points 
(Fig. 5d) varied in type, so much so that a second round 
of image extraction was needed to include more taps and 
the (usually white) pipes connected to them. This “fuzzi-
ness” is typical for informal settlements where the whole 
environment tends to be unplanned and rather haphaz-
ard leading to a lack of image clarity found in most simi-
lar developed world projects.

The training hyper-parameters and other details such 
as image resolution are shown in Table 2.2

A common metric used to indicate the quality of a 
classification model is the F-score which is essentially 
the harmonic mean of the precision and recall. The 

Table 1 Details of  images used for  training. For  water 
point an additional set was added due to a lack of images 
containing pipes and taps

Category Total images Total objects Total 
images(II)

Total objects(II)

Drain 98 98 – –

Trash 67 84 – –

M.Water 74 86 – –

W.Bucket 49 96 – –

Tire 55 88 – –

W.Point 59 61 94 104

1 The selected neighborhoods included A in 2017 (two different cameras on 
the same route), 2018, and 2019; B in 2019; C in 2017; D in 2018 and 2019, 
and E in 2018.

2 For each of the categories, separate training tasks were initiated, being exe-
cuted on a GPU-enabled Intel Core i7-9700  K CPU with 64  GB RAM. We 
have utilized NVIDIA GeForce GTX 1070 with 8 GB RAM for running Ten-
sorflow optimized for GPU. For all the training tasks various quality parame-
ters such as precision, recall, mean average precision (mAP), and F-score were 
captured.
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Fig. 5 Example training images used for labelling a Trash, b Muddy Water, c Drain, and d Water Point

Table 2 Initialization parameters for the training algorithm

Lr learning rate

Image Size Mini-batch Size Total Epochs momentum (SGD) Initial Lr Final Lr Weight Decay

608px 1 273 0.97 0.002 -0.04 0.0004
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model trained for identifying drains had almost a perfect 
F-score (around 1) after complete training (273 epochs), 
while the model trained for muddy water had the lowest 
F-score (around 0.4) (Fig.  6). The F-score for trash was 
around 0.5, for water points averaged between 0.6 and 
0.7, for water buckets was between 0.7 and 0.8, and for 
tires was 0.8 to 0.9 (Fig. 6).

While the F-score helps to gain insight into the classifi-
cation accuracy of the model, the mean average precision 
(mAP) provides a better understanding of detection by 
considering the Intersection over Union (IoU) (Eq. 2) cri-
teria. IoU determines whether the bounding box for the 
objects was also correctly predicted. In order to assign a 
prediction as a “match”, the label has to be correct and the 
IoU should be above a certain threshold (normally 0.5). 
The mAP vs epoch graph for all the six categories show 
that the muddy water and trash classifiers had a low mAP 
(20% to 40%), while the classifier for water point had a 
mAP around 60%, and classifiers for water buckets (mAP 
around 75%), tires (mAP around 80%), and drain (mAP 
around 85%) had relatively high mAP (Fig. 7).

For the first round accuracy testing with an image 
resolution of 608px (Fig. 8) and a frame frequency of 10, 
classifiers for drain and water buckets had the highest 
accuracy at 91% and 95% respectively (Table 3). Classifi-
ers for tires and animals had a medium level of accuracy 
at 86% and 82% respectively, while classifiers for water 
point, trash and muddy water performed worst with an 
accuracy of 73%, 72%, and 68% respectively (Table 3). For 

the second round of accuracy testing with a frame win-
dow of 60 frames, every classifier except for water points 
increased in accuracy (Fig. 9). The accuracy of the classi-
fier for drain increased from 91 to 97%, while the accu-
racy for the water bucket classifier increased from 95 to 
97% (Table 3). Classifiers for tires and animals which had 
medium accuracy in the first round (86% and 82%) rose to 
91% (Table 3). Of the initially poorest performing classi-
fiers, trash and muddy water, accuracy improved to16.6% 
and 20.5% respectively. By analyzing the image results for 
water points, we found that the initial training dataset 
lacked a suitable breadth of images, especially single pipe 
based water points which led to the poor predictions. To 
tackle this issue, we added an additional set of 35 images 
from the SV archive with pipe-based water points (Fig. 8). 
After adding the new set of images the accuracy for the 
water point classifier increased by about 15% (Table  3). 
Finally, by changing the detection resolution at vari-
ous levels (from 224 to 1280px), the accuracy for mod-
els trained to classify drains (2% increase), trash (14.2% 
increase), muddy water (14.6% increase), and water points 
(9.5% increase) all improved, while the remaining models 
had no change in classification accuracy (Table 3). 

Runtime statistics (Table 4) for the accuracy test indi-
cate that prediction time for a single image frame is 
almost the same for all image resolutions. This is impor-
tant as the total number of frames that can be stacked 
together to form a single packet for running predictions 
varies with image resolution. Images at lower resolutions 

Fig. 6 F-Score vs Epoch for the six different health risk categories
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(224px or 416px) consume less memory and can be effi-
ciently processed by stacking up a large number of frames 
to form packets.

Discussion
Informal settlements are a challenging mix of differ-
ent health challenges and poor available data. Previous 
use of machine learning classification for these environ-
ments have utilized overhead remotely sensed imagery 
to identify and map their geographic extent. While suc-
cessful at this relatively coarse spatial scale, for public 
health intervention there is a need for street and house 
level data. Only at this scale, with these types of data, can 
an accurate assessment of the interaction between liv-
ing conditions and potential environmental health risks 
be identified. To use machine learning at this scale, to 
capture factors that often occur beneath the overlapping 
building canopy and therefore beyond normal remotely 
sensed imagery [45], a new image library is required. 
These data also need to be longitudinal given the dynamic 
nature of these spaces, with significant changes occurring 
at different cadences, both seasonally and then from year 
to year [9, 13]. To be able to create a sustainable way to 
identify and map health risks could prove vital for health 
intervention initiatives. Unfortunately, when cross-sec-
tional mapping efforts are mobilized, benefits are limited 
as there is little chance of repeat data collection and map-
ping due to resource limitations. One possible solution is 
SV, a data collection method that has been successfully 

used in informal settlements in various countries. The 
method itself is relatively easy to use. The challenge is 
in how to turn these data into knowledge in the form 
of local maps. The first step addressed in this paper is 
using machine learning to effectively classify these video 
archives into objects labeled as being a health risk.

An ongoing project in Haiti supporting local epide-
miological investigations has produced a SV archive to 
both train a series of machine learning models and then 
test their resulting ability to identify environmental risk 
factors. Model output shows that this is indeed a viable 
approach to classifying environmental risks. The model 
performance output, as seen in the F-Score (Fig.  6) and 
mAP (Fig. 7) graphs reveal that this approach works best 
for “distinct” objects such as drains, tires, and buckets, 
though there is less success in identifying more “fuzzy” 
features such as trash and muddy water. From a train-
ing perspective this is because these objects have a well-
defined structure (edges and corners) and can be more 
easily “learned”, while trash and muddy water are often 
more amorphous and as such pose a greater challenge 
for the learning algorithm to extract the relevant fea-
tures. From a health perspective this means that some 
features with known health risks, such as tires [14, 34] 
(mosquitos) or drains [15] (enteric disease or drinking 
water contamination) can even now be easily identified 
for mapping purposes. Of more concern is the ability to 
correctly identify muddy areas which have been linked 
to variety of diseases, especially where children play, and 

Fig. 7 Mean average precision (mAP) vs Epoch for the six different health risk categories
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trash accumulations where containers provide breed-
ing grounds for mosquitos, attract animals and become 
dumping grounds for human feces [7]. However, nuances 
in image detection for these features also revealed possi-
ble model improvements. For example, detection success 
depends on the scale or aggregation of the features. For 
example, a single piece of trash can be more easily identi-
fied because of its distinctness but when the volume of 
trash increases (as does the associated health risk), the 
mass now including a mix of objects such as bottles, dis-
posable food containers, and plastic covers than a more 
continuous “trash space” occurs. While still being trash, 
this aggregation leads to a fuzziness that reduces suc-
cessful identification. Unfortunately, from a health per-
spective it is our experience that these types of trash 
agglomerations are commonplace in informal settle-
ments. Therefore, potentially, the training images selected 

might need to be reconsidered into subcategories based 
on an agglomeration to distinctness continuum.

Our results also revealed that while some models might 
be successfully transferable to other sites and even coun-
tries (tires being the best example), there is also a degree 
of location specificity that will be needed for local train-
ing. For example, water point detection didn’t improve by 
increasing the frame rate (no change) or the image reso-
lution (minor change). This was because the initial selec-
tion of training images was not broad enough to account 
for more local variations in water access and we did not 
initially include enough tap and pipe examples (Fig. 5d). 
There was a considerable performance gain (R3% for 
water point) (Table  3) after adding a new set of sample 
images with taps and pipes to the training set (Fig. 10). It 
is likely that this type of localized nuance will always be 
needed in model training. Other potential examples of 

Table 3 Prediction accuracy test results for  drain, trash, muddy water (M.Water), water point (W.Point), water bucket 
(W.Bucket), tires, and animals

Video# Drain Trash M.Water

T R1% R2% R3% T R1% R2% R3% T R1% R2% R3%

1 15 100 100 100 10 100 100 100 9 78 89 89

2 20 95 95 100 19 74 84 100 62 65 77 92

3 13 100 100 100 25 76 84 100 38 74 89 95

4 15 100 100 100 11 64 73 100 6 83 83 100

5 6 50 100 100 15 27 53 93 8 38 38 75

6 7 86 86 100 40 75 85 93 65 83 95 100

7 21 100 100 100 21 57 86 90 31 55 81 97

8 6 100 100 100 7 100 100 100 5 80 100 100

9 4 75 75 75 16 88 94 100 11 45 73 100

10 5 80 100 100 43 72 84 98 31 55 71 87

11 10 100 100 100 17 76 88 94 13 69 85 100

12 13 62 92 92 15 80 80 93 29 72 72 90

Totals 135 91 97 99 239 72 84 96 308 68 82 94

W. Point W. Bucket Tire Animal

T R1% R2% R3% R4% T R1% R2% R3% T R1% R2% R3% T R1% R2% R3%

4 100 100 100 100 16 88 100 100 1 100 100 100 5 100 100 100

6 50 50 83 83 27 96 96 96 18 83 89 89 7 86 100 100

3 100 100 100 100 11 100 100 100 2 100 100 100 3 67 67 67

7 86 86 86 86 9 100 100 100 1 0 100 100 1 100 100 100

5 60 60 60 80 9 78 78 78 14 93 93 93 7 86 100 100

3 33 33 67 67 4 100 100 100 2 50 50 50 8 100 100 100

4 25 25 100 100 9 100 100 100 25 88 92 92 6 67 83 83

1 100 100 100 100 1 100 100 100 1 0 0 0 1 0 0 0

3 33 33 33 100 2 100 100 100 4 100 100 100 2 100 100 100

5 80 80 80 100 2 100 100 100 3 100 100 100 3 67 100 100

2 100 100 100 100 3 100 100 100 1 0 0 0

8 100 100 100 100 12 100 100 100 7 86 100 100

51 73 73 84 92 105 95 97 97 71 86 91 91 44 82 91 91
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in situ training might include public toilets, food vendors 
and health communication signage.

There was a substantial performance improvement 
in-terms of detection accuracy when more frames were 
added into the model (R2%) (Table  3). One explanation 
for this is because of the way data tend to be collected in 
these environments. A hand held (often semi concealed) 
camera tends to be used because of the narrow passages 
and area insecurity. This will often result in consider-
able variation in image quality, angle and point of focus. 
For Haiti, while the SV was focused on key features con-
nected to the project, such as water points, which would 
mean frame sampling is appropriate, on the walking 
path sometimes only 1 in 10 frames might be suitable for 
model prediction. Therefore, any form of frame sampling 
is likely to decrease overall model performance. Hav-
ing multiple frame options also increases the chance of 
the feature being identified to be located at the center 
of the image rather than in the periphery, which again 
aids in detection. The trade off, of course, is a consider-
able increase in computation time (Table 4). However, we 
believe this is an acceptable cost in order to fully leverage 
the varying quality in the SV.

An interesting finding regarding image resolution and 
testing accuracy occurred in the third round of test-
ing (R3%) (Table 3). Running the detection algorithm at 
higher resolutions (> 832px), helped to identify objects 
further from the primary camera focus. As an example, 

a trash pile that was under a bridge (at a greater focal 
distance) (Fig.  11c) was only captured by the detection 
algorithm when the image resolution was set to (1280px). 
On the contrary, running the detection algorithm at low 
resolution (224 or 416px) are particularly useful when the 
object is closer to the camera (Fig. 11e, g). Therefore, for 
informal settlements there might be a need to use flexible 
imagery inputs (downscaling when necessary) for certain 
risks, especially the fuzzier categories such as trash, mud 
or standing water.

We also experimented with the success of image detec-
tion based on the type of video input. SV was selected 
for different time periods at the same location (to assess 
stability in detection across time), and different camera 
models and angles of view. While all these variants can-
not be described in this paper, overall the results were 
encouraging across all camera types. This is important 
as there is likely to be little consistency in camera types 
used in different locations, for example recently collabo-
rators have started to use smart phones. Of more impor-
tance, as already mentioned, was making sure the camera 
was pointed at the feature of interest rather than captur-
ing it in the image periphery. For future SV data collec-
tions, informing the field team to pay attention to a list of 
pre-defined risk features would certainly improve model 
performance. However, even with a more focused intent, 
there is still the possibility for secondary feature detec-
tion, especially if these data are repurposed for other 
informal settlement and research needs and perspectives. 
This is an important health consideration, for example, 
during the current Covid-19 situation, how might these 
video be used to either identify potential risk areas, or 
alternatively where testing or vaccination initiatives be 
targeted.

To improve the detection accuracy for fuzzy risks such 
as trash and muddy water we suggest two alternatives; 
increasing the number of training samples and changing 
the detection algorithm to a pixel-based approach such as 
semantic segmentation [31, 47]. To further improve the 
detection, we could also use contextual clues combined 
with feature detection. As an example, on the first pass 

Fig. 8 Positive object detections after  1st round of accuracy testing. 
The resolution for the image was set at 608px. Frame frequency was 
set to 10 frames. Positive object detection examples for a Muddy 
Water, b Drain, c Trash, d Water Buckets, e Tire, f Animal, and f Water 
Point

Table 4 Runtime statistics for  predictions at  various 
resolutions

Resolution Prediction time 
for single frame 
(s)

Max stack size Prediction 
time for max 
stack (s)

416px 0.03 70 0.03

608px 0.02 30 0.02

832px 0.02 15 0.02

1024px 0.02 10 0.02

1280px 0.02 5 0.02
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for water point detection some locations were missed 
(such as Fig. 12g), results may have improved if an area 
proximity context scan had also been included, such as 
proximate buckets which had a high F-Score (Fig. 6) and 
mAP (Fig. 7) score. A cluster of these images, in combi-
nation with the water point prediction algorithm, might 

improve results. We found that just searching for clusters 
of buckets would not necessarily result in water points, 
but there is synergy in their combination. Again, this 
might need additional local training to determine appro-
priate contextualization (such as water container type).

Fig. 9 Positive object detections after 2nd round of accuracy testing. The resolution for the image was set at 608px. A frame window of 60 was 
selected for detection. Positive object detection examples for a Muddy Water, b Drain, c Trash, d Water Buckets, e Tire, and f Animal

Fig. 10 Example of a pipe-based water point that was added to the training set after the second round
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It is hard to determine exactly how much additional 
local training would be required for the translation of 
these models to other countries. We suspect that cer-
tain features, like tires and drains are universal and can 
be successfully labelled from SV even without training, 
though as mentioned local configurations or contextual-
ization would still improve results. Water points, toilets, 
street vendors and even the type of discarded trash might 
require additional training.

Next steps include determining the geographic varia-
tion in local training need by applying the results from 
this paper to other countries. This is vital because the 
type of SV data used in this paper is still not commonly 
available, though the technology is relatively inexpensive 
(approximately $150 per GPS enabled camera). While 
the authors have utilized SV in over twenty different 
countries, we acknowledge that more widespread adop-
tion beyond the project team is still slow, though new 
groups do continually contact the authors for advice on 
implementation. The use of cell phone video collection 
in association with a GPS App in theory offers a more 
widespread utilization. However, the biggest impedi-
ment to growth in this method, is exactly what has 

been addressed in this paper, how to leverage data col-
lected. What we have shown here is that these data can 
be turned into environmental health risk images when 
models are trained with the inclusion of local nuance. 
Next we will begin to merge image recognition with the 
associated coordinates simultaneously recorded within 
each frame of the SV so that these health risks can be 
automatically mapped once identified. Not only will this 
prove to be an important step forward in spatially sup-
porting public health and epidemiological work in even 
the most challenging environments, but we believe this 
is the missing piece in making the SV method more 
widely utilized.

Conclusion
Improving global health through hardware and software 
developments should be a research imperative. For the 
most challenging environments, a lack of data and logisti-
cal resources make disease prevention particularly difficult. 
SV data collection offers an exciting option for “mapping 
at the scale of intervention”. In this paper we have evolved 
this method further by showing how machine learning can 
be used to identify features typically associated with health 

Fig. 11 Positive object detections after 3rd round of accuracy testing. The resolution for the image varied from 224 to 1280px. A frame window of 
60 was selected for detection. Positive object detection examples for a Muddy Water (832px), b Muddy Water (1280px), c Trash (1280px), d Trash 
(416px), e Trash (416px), f Water Point (1280px), g Water Point (416px), h Water Point (1024px), and i Drain (416px)
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risks from these videos. We have investigated how different 
environmental features vary in terms of model prediction, 
and how changes in the frequency of image selection, the 
type of object being classified, and even the image quality 
can vary results. We conclude that an SV—machine learn-
ing method is viable, and that in future, once these labeled 
video frames can be reattached to their associated GPS 
coordinates, then the prospect of an automatic mapping of 
dynamic challenging environments is an achievable goal.
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