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Abstract 

Background: Geographic information systems (GIS) are often used to examine the association between both physi-
cal activity and nutrition environments, and children’s health. It is often assumed that geospatial datasets are accurate 
and complete. Furthermore, GIS datasets regularly lack metadata on the temporal specificity. Data is usually provided 
‘as is’, and therefore may be unsuitable for retrospective or longitudinal studies of health outcomes. In this paper we 
outline a practical approach to both fill gaps in geospatial datasets, and to test their temporal validity. This approach is 
applied to both district council and open-source datasets in the Taranaki region of Aotearoa New Zealand.

Methods: We used the ‘streetview’ python script to download historic Google Street View (GSV) images taken 
between 2012 and 2016 across specific locations in the Taranaki region. Images were reviewed and relevant features 
were incorporated into GIS datasets.

Results: A total of 5166 coordinates with environmental features missing from council datasets were identified. The 
temporal validity of 402 (49%) environmental features was able to be confirmed from council dataset considered to 
be ‘complete’. A total of 664 (55%) food outlets were identified and temporally validated.

Conclusions: Our research indicates that geospatial datasets are not always complete or temporally valid. We have 
outlined an approach to test the sensitivity and specificity of GIS datasets using GSV images. A substantial number of 
features were identified, highlighting the limitations of many GIS datasets.

Keywords: Measurement, Neighbourhood environments, Child health, Health behaviours, Health geography, Child-
friendly cities
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Introduction
Neighbourhood design can have a substantial and per-
vasive influence on child health [1, 2]. A considerable 
body of literature demonstrates connections between 
children’s physical activity and environmental features 
[3]. Specifically, children’s physical activity is facilitated 
through residing in neighbourhoods that have higher 
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levels of street connectivity, have adequate infrastructure 
for safe walking and cycling, have higher population den-
sities, and have higher densities of places of importance 
(e.g., schools, parks) [4–8].

Environments that promote physical activity may 
also reduce the risk of obesity in children, although the 
evidence is less clear [6, 7]. Inconsistent findings exist 
regarding nutrition environments and child health [3, 
8, 9], in part due to heterogeneous methods for defin-
ing the environment of interest, and in the environmen-
tal variables explored [10]. Inconsistent reporting of 
research methods further hinders a clear understand-
ing of the extant evidence, leading to calls for improved 
reporting [11]. Residing in areas where access to, and 
availability of unhealthy food options such as proxim-
ity to fast-food restaurants has been inversely related to 
risk of obesity in children [12]. Conversely, the volume 
of fast food restaurants (but not proximity to the clos-
est) was associated with higher risk of obesity in a study 
with over 30,000 youth in the United Kingdom [13]. One 
study in Aotearoa New Zealand (henceforth referred to 
as Aotearoa) revealed no direct relationship between 
unhealthy food environments and unhealthy dietary 
behaviours or excess body size using structural equation 
modelling [14]. Instead, greater neighbourhood depri-
vation and unhealthy dietary behaviours were both sig-
nificantly related to having a higher waist-to-height ratio, 
which has been shown to be a useful predictor of meta-
bolic syndrome in children [15].

Socio-economic factors play a key role in under-
standing environment-health relationships, particularly 
when considering nutrition environments. Socio-eco-
nomic inequities in food retail environments have been 
observed, alongside clustering of food outlets around 
schools [16–18]. Some evidence exists for gender differ-
ences in relationships between nutrition environments 
and child obesity; Chen and Wang [19] demonstrated sig-
nificant relationships for girls but not for boys.

Measurement and indices of children’s health‑promoting 
environments using geographic information systems
Calls have been made to improve sensitivity and speci-
ficity in measurement of neighbourhoods and improved 
built environment metrics for understanding health-envi-
ronment relationships [20, 21]. A range of child-specific 
approaches using geographic information systems (GIS) 
have been developed, including using kernel density to 
calculate a multicomponent measure of obesogenic envi-
ronments [22], as well as a measure of school-specific 
walkability [23] and a child-specific destination accessi-
bility index [24], both calculated within defined buffers. 
Calculating variables within Euclidean or network buffers 
around residential and/or school addresses have been the 

dominant approach in children’s geographies literature 
[10]. Optimal buffer distances are yet to be determined, 
with some suggesting between 800 and 1000  m as best 
for understanding physical activity participation [10, 
25]. Alternative approaches to defining neighbourhoods 
have included kernel density, using participant-drawn 
or global positioning systems (GPS)-derived “activity 
spaces” or routes, and administrative boundaries. Each 
method has its own strengths and weaknesses, and no 
optimal approach has been determined to date [10].

GIS allows researchers to integrate different data-
sets with spatial information in powerful ways that are 
becoming increasingly important for health research and 
policy [26]. However, additional challenges exist with 
using GIS to measure environments, including the reli-
ance on access to data that is of sufficient quality and is 
complete. Across larger regions data may not be available 
for all areas, especially for different administrative areas 
where different organisations are responsible for col-
lecting and maintaining data. Furthermore, even if data 
are complete and accessible, temporal information (i.e., 
the date that data on built environment features were 
collected) is often missing. Both the spatial and tem-
poral resolution of GIS data is becoming increasingly 
important [27], and temporal accuracy, consistency, and 
validity are considered to be key quality measures [28]. 
Temporally integrated geographies have the potential to 
shed new insight into environmental exposure research 
[29]. Environments, and the GIS data that represents 
these environments, change over time and therefore the 
development of ‘temporal’ GIS datasets is a key chal-
lenge [30, 31]. Temporally inaccurate data sources, such 
as GIS datasets of footpaths that are out-of-date, can 
introduce inaccuracies into analyses by misrepresenting 
built environments [32]. This is particularly important 
when the research aim is to assess the impact of exposure 
to an environment on a specific cohort, and the tempo-
ral specificity of outcome data is not contemporaneous 
with environmental data. Therefore, a core component 
of ‘temporal’ GIS data is that they seek to monitor and 
understand environmental changes over time, through 
quality control information, rather than just reproduc-
ing ‘snap-shots’ [30]. A further issue is that datasets may 
not include all features and locations of importance such 
as marae (sacred place used by Māori for cultural, reli-
gious, and social purposes in Aotearoa) or sites of sig-
nificance. GIS datasets are often provided ‘as-is’ with 
little metadata. Moreover, the historical accuracy of data 
is often unknown, making longitudinal analysis difficult 
or impossible. Ultimately this can lead to incomplete or 
inconsistent data both in terms of spatial variables and 
temporality. The quality of GIS analysis and research 
depends on the quality of the data used. However, 
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researchers often work with the GIS data that is available, 
rather than what is most suitable for their research ques-
tion, leaving potential for the misuse of spatial data [33].

Spatial metrics to estimate environmental exposure
Determining an appropriate geographic area to estimate 
environmental exposure is key in studies examining con-
textual determinants of health [34]. This can involve using 
‘static’ concepts of place by examining the administrative 
units that children live within, based on an assumption 
that neighbourhood of residence has the most important 
impact on outcomes of interest, and that individuals liv-
ing in the same area unit experience the same exposures 
and contextual effects [34]. However, Kwan et  al. [35] 
argue that in fact, the “most important determinants of 
exposure are where and how much time people spend 
while engaged in their daily activities”. These ‘activity 
spaces’ are the local areas and environments that chil-
dren travel within and interact with daily, and contain 
locations children usually visit [34, 36, 37]. Accurately 
estimating activity spaces can be difficult. The uncer-
tain geographic context problem highlights that there 
is uncertainty in the spatial extent of individuals experi-
enced environments, as well as temporal uncertainty in 
the timing and duration of these experiences [34]. With-
out using GPS trackers to follow the movements of each 
child across the study period, and temporally weighting 
locations according to the time spent at them [38], it is 
difficult to know whether estimated neighbourhoods are 
a true reflection of the environments that children are 
exposed to in their daily lives. Selective daily activity bias 
is another issue. If activity spaces are developed based on 
locations that people visit, then the features at these loca-
tions shape the estimated environment that people are 
exposed to. The observation of a ‘healthy environment’ 
may actually reflect individual choices to visit healthy 
locations [39].

When defining neighbourhood boundaries for individ-
ual exposure Jia et al. [40] recommend ensuring that envi-
ronmental exposure is considered at multiple localities 
such as the home and school. Research from Aotearoa 
indicates that the food environments around children’s 
homes and their schools differs substantially. Fast-food 
outlets and convenience stores are significantly clustered 
around both primary and secondary schools [18]. This 
suggests that these environments should be considered 
together in order to accurately assess the environments 
that children are exposed to on a regular basis. Individu-
alised activity spaces can be created for multiple localities 
by combining home, school, and daily transport envi-
ronments with a 200 m buffer around the shortest path 
between each participant’s residence and school [41].

Determining the appropriate metric for an activity 
space is important as using different approaches to defin-
ing neighbourhoods and activity spaces can produce 
different results [25]. A recent systematic review [10] 
of GIS-based approaches to measure children’s neigh-
bourhood geographies, mostly conducted in the USA, 
found that while no singular approach is optimal, stud-
ies usually used Euclidean or network buffers ranging 
from 100 m to 5 km. In the Aotearoa context, a range of 
different road network buffer sizes from 250 m to 1 km 
have been used to estimate the extent of children’s neigh-
bourhoods [4, 16, 18, 24, 42]. While adults have different 
mobility patterns to children, Mavoa and colleagues [25] 
have comprehensively assessed the impact of buffer size, 
and suggest that while there is no singular ideal neigh-
bourhood definition, 800 m and 1 km road network buff-
ers produced the most consistent association between 
the built environment and physical activity in adults.

Using Google Street View (GSV) to measure environments
Google Street View (GSV) has the potential to act as a 
rich source of data relating to the built environment in 
public spaces [43]. While some aspects of GSV imagery 
have been critiqued, including its patchy global coverage 
[44], variable collection frequency [45], and variations 
in capture dates within neighbourhoods [46], the use of 
GSV has spanned health applications [47], travel patterns 
[48], and streetscape audits [24, 49]. Tools have been 
developed to guide the auditing of neighbourhood obe-
sogenic environments using screenshots of GSV images 
[50]. Importantly, GSV is an emerging historical dataset 
that can enable the retrospective assessment of environ-
mental variables over time [48, 51], and be used to assess 
the temporal validity of alternative data sources (e.g., 
GIS databases). Screenshots of the GSV ‘Time Machine’ 
function have been captured to examine cross-sectional 
change in the food environment of the Bronx, New York 
[52].

In children’s health geographies research, GSV has 
been used to measure obesogenic advertising in chil-
dren’s neighbourhoods [53] and on bus stops around 
schools [54]. This growing area of research has demon-
strated the utility of GSV to measure environmental fea-
tures in relation to health outcomes. As well as being cost 
effective, GSV holds much potential to fill gaps in miss-
ing data (e.g., footpath data which can be missing in GIS 
datasets [55]). Recently, researchers [56] have demon-
strated that batches of GSV images can be downloaded 
through the Google’s Street View Static API (Application 
Programming Interface), improving the efficiency of the 
approach. This approach has also been combined with 
‘computer vision’ technology to audit all intersections 
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across an entire country [57], detect and map traffic signs 
[58], and examine land use [59].

To date, exploring how data from GSV can be triangu-
lated to both validate the historical accuracy of secondary 
GIS data, and to fill gaps in incomplete GIS datasets has 
not been explicitly undertaken. Exploring the potential 
for using historical GSV data to simultaneously meas-
ure children’s nutrition and physical activity environ-
ments is justified. Therefore, this study aims to develop 
an approach that tests and improves the sensitivity and 
specificity of GIS datasets using GSV that can be applied 
to both children’s nutrition and physical activity envi-
ronments. We aim to show how GSV can supplement 
secondary GIS datasets to overcome some of the limita-
tions of these datasets, including the unknown temporal 
or spatial accuracy of features. This paper adds a novel 
approach to gap-fill and validate the temporal accuracy 
of secondary GIS data at the individual activity space 
level for a study cohort. This builds on previous work 
in the area by outlining a practical approach for auto-
mating the downloading of historic GSV images (rather 
than relying on manual screenshots from the desktop 
‘Time Machine’). It describes an approach and ration-
ale to efficiently access historic GSV images that would 
allow a detailed assessment of an individual’s entire esti-
mated activity space, including a comprehensive range 
of features from both the food and physical activity envi-
ronments that are of particular relevance to childhood 
obesity. While computer vision and deep learning mod-
els are not a specific focus of this paper, we also discuss 
their potential application to our approach, and how they 
may further improve the efficiency of GIS data validation, 
virtual environmental audits, and the replicability of our 
outlined methodology.

Setting
It is important that any approach to measuring nutrition 
and physical activity environments is context-specific 
and relevant. Ideally approaches can also be used across 
geographic contexts to enable consistency in reporting 
and understanding health-environment relationships. 
This research was undertaken with data from Taranaki, 
Aotearoa, a mixed urban–rural population of approxi-
mately 24,688 children aged 0–15 years, of whom 19.8% 
identify as Māori (Aotearoa’s Indigenous population) 
[60]. The Taranaki region has historically experienced 
high levels of childhood obesity [61], therefore, this 
region was prioritised as a potential geographic set-
ting for this research. Furthermore, while most GSV 
research in children’s health geographies appears to be 
conducted in urban settings, it must also be relevant to 
rural areas where infrastructure and environmental fea-
tures can differ significantly. The availability and quality 

of GIS datasets may also differ between rural and urban 
areas. Therefore, the approach to supplementing and tri-
angulating GIS datasets with GSV data developed in this 
paper needs to be appropriate to both rural and urban 
regions with GSV coverage. The city of New Plymouth 
has around 84,400 residents [62], accounting for 69% 
of the Taranaki population, and is essentially urban. On 
the other hand, other areas of Taranaki such as towns in 
Stratford and South Taranaki districts are much smaller 
rural towns with different nutritional and physical activ-
ity environments, and levels of infrastructure. The urban/
rural make-up of Taranaki makes the region an optimal 
setting to undertake this study. Figure  1 indicates the 
district council boundaries in the Taranaki region. New 
Plymouth district is to the north, and includes New 
Plymouth and Waitara, Stratford district includes the 
town of Stratford, while South Taranaki district includes 
Hāwera and Ōpunake.

Methods
Study context and overview
This paper is part of a wider study called the Knowing 
Your Neighbourhood Study (KYNS), which has been 
designed to develop novel geospatial methods for exam-
ining the physical activity and nutritional environments 
of children. The KYNS adds to a series of studies associ-
ated with Whānau Pakari, a multidisciplinary assessment 
and intervention programme for children and adoles-
cents affected by obesity in Taranaki [63]. Whānau Pakari 
aims to provide a community-based, family-focused 
approach to providing support for healthy lifestyle 
change. A randomised clinical trial was embedded within 
the programme, and is reported elsewhere [64, 65]. From 
2012 to 2016, baseline, 6-month, 12-month, 24-month 
data were collected, including medical information such 
as body mass index (BMI) standard deviation score 
(SDS), dietary behaviour, and physical activity [63]. This 
programme aimed to reach and engage with those most 
affected by obesity in the region, namely Māori, and 
those living in the areas of highest socioeconomic dep-
rivation. This was achieved by ensuring appropriate and 
acceptable service provision [64]. Baseline data from the 
Whānau Pakari cohort (98% with a BMI ≥ 98th percen-
tile, 2% with a BMI 91st–98th percentile with weight-
related comorbidities at entry) found a higher prevalence 
of suboptimal dietary behaviours and significant differ-
ences in dietary intake when compared with national 
counterparts [66]. Low levels of physical activity were 
identified, with the vast majority not meeting national 
physical activity recommendations [67]. The KYNS will 
utilise data from Whānau Pakari to examine associations 
between children’s neighbourhoods and outcomes such 



Page 5 of 15Whitehead et al. Int J Health Geogr           (2021) 20:37  

as children’s physical activity and eating behaviours, as 
well as BMI SDS.

The aim of the current paper is to outline an innova-
tive approach to testing the temporal accuracy of second-
ary data. This approach will help to identify any issues 
with council GIS data provided for the KYNS study, and 
will supplement these datasets. The final datasets devel-
oped in this paper will be used in future KYNS research 
to develop measures of children’s physical activity and 
nutrition environments.

Several steps were involved in this approach, which are 
displayed below in Fig. 2. Each stage is also described in 
further detail in following subsections of this paper.

Stage 1: data sources and availability
The overarching aim of the KYNS is to develop an 
index of healthy environments of children, and to uti-
lise it to assess the impact the physical activity and food 
environment has on children’s health and both dietary 
and physical activity behaviours. Jia [68] has recently 
led a series of systematic reviews and meta-analyses 
of child-specific obesogenic environmental studies, 
and outlined 10 key spatial indicators for built envi-
ronments, six spatial indicators of food environments, 
and two other groups of factors—natural environmen-
tal and traffic-related. Jia’s research was used to inform 

the environmental variables that could be included in 
a novel index, and several potential data sources were 
identified. These included open-source (usually Gov-
ernment) datasets and data provided by district coun-
cils in the study area. Table 1 defines the data sources 
compiled for this study, how many different datasets are 
in each group, and the distribution of this data across 
the study region.

Fig. 1 The study area

1
• Compile secondary data  
Iden�fy gaps in data provision for features of interest

2
• Create ac�vity spaces

3
• Iden�fy coordinates  
Download GSV images

4
• Coding environmental features from GSV images

5
• Create geospa�al data 
Descrip�ve sta�s�cs

Fig. 2 Key steps in methods
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The residential addresses of eligible Whānau Pakari 
participants were geocoded and utilised to define the 
spatial extent of the study area. Five relevant open-source 
datasets were accessed, all of which were either national 
or regional datasets, and therefore had the same level of 
coverage for the entire study region. Table 2 outlines each 
open-source dataset that was downloaded, its source, and 
its use in the study. While many open-source datasets 
provide important information, most of the detailed built 
environment data used in this research was provided by 
district councils in the Taranaki region.1

Historic data for the study period was requested from 
councils, however datasets were based on current district 
council data. While these were considered up-to-date 
at the time of provision, it was not known whether the 
environmental features in these datasets were present at 
the time the Whānau Pakari intervention was carried out 
(2012–2016). Furthermore, data coverage varied for each 
of the district councils within the Taranaki region. Some 
district councils were unable to provide all requested 
data, resulting in gaps in the overall dataset. Table 3 out-
lines data coverage for each district council region in the 
study area, and shows that data coverage was incomplete 
for public transportation, pedestrian crossings, on-street 
parking, traffic calming features, parks and playgrounds, 

water fountains, and registers of businesses. Parks and 
playgrounds in Aotearoa are generally council-managed 
recreational reserves rather than natural spaces, open 
spaces, or blue spaces.

To fill these gaps in district council datasets and review 
the temporal validity of provided data three key objec-
tives were decided upon:

1. Fill gaps in data in the Stratford and South Taranaki 
District Council regions (see Table 3) (n = 41 activity 
spaces).

Table 1 Data sources used to develop the Knowing Your Neighbourhood Study dataset, by region and district

Type of source Taranaki region total (n) New Plymouth District (n) Stratford District (n) South Taranaki 
District (n)

Eligible children in Whānau Pakari 136 95 6 35

Open-source data 5 5 5 5

District council data 11 10 7 6

Table 2 Open-source data accessed for the Knowing Your Neighbourhood Study

Data Source Use

Taranaki region schools Education Counts [69] Creating activity spaces; Defining the study area and study regions

NZ Road centrelines Land Information New Zealand (LINZ) [70]

Regional Council and Territorial 
Authority boundaries

Statistics New Zealand [71, 72]

Businesses, including food outlets Zenbu [73]; Googleway R package [74] Assessing the temporal validity of open source-business data; Gap 
filling council provided GIS dataGoogle Street View (GSV) images Streetview python API [75]

Table 3 Data provided by district councils in the Taranaki region

✓ denotes that data was available; ✗ indicates the data was unavailable

Data New 
Plymouth

Stratford South 
Taranaki

Land use zoning ✓ ✓ ✓
Footpaths ✓ ✓ ✗
Cycleways ✓ ✓ ✓
Public transportation ✓ ✗ ✗
Streetlights ✓ ✓ ✓
Pedestrian crossings ✓ ✓ ✗
On-street parking ✓ ✓ ✗
Traffic calming features ✓ ✗ ✗
Parks and playgrounds ✓ ✗ ✓
Water fountains ✓ ✗ ✗
Register of businesses ✗ ✗ ✓

1 New Plymouth District Council have a ‘GeoHUB’ with GIS data is freely 
available online, which could be considered ‘open-source data’. However 
accessing similar data from Stratford and South Taranaki District Councils 
required making direct requests to the GIS teams at these councils. For con-
sistency, data from NPDC has been grouped together with other councils and 
is considered ‘council data’.
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2. Validate the temporal validity of public transpor-
tation, speed bump, and pedestrian crossing data 
provided by New Plymouth District Council (see 
Table 3) (n = 826 data points).

3. Validate the temporal validity of open-source data 
on food outlets (see Table 2) (n = 1353 data points). 
While food outlets data were not ‘date-stamped’, 
they were selected as open-source data to be vali-
dated because they are the most likely of the five 
open-source datasets to regularly change. The loca-
tions of schools, and road centrelines are relatively 
stable, while regional council and territorial authority 
boundaries are administrative constructs unable to 
be validated with GSV.

To achieve these objectives, a practical method using 
GSV images was developed. We found GSV coverage 
for all public roads in Aotearoa, including the Taranaki 
region, and image capture began in 2008. Therefore, it 
was possible to download historic, date-stamped, images. 
Furthermore, the street-level angle of the images allowed 
many features of interest (e.g., bus stops) to be identified. 
While GSV images can be downloaded for most coordi-
nates that lie along the road network, it was not feasible 
to download and review GSV images for every section of 
road in the entire study region as this would have resulted 
in more than 490,000 images. Furthermore, the goals 

of the wider project were to investigate the relationship 
between environmental features and the health, dietary 
behaviours, and physical activity behaviours of children 
who participated in the Whānau Pakari trial. Therefore, 
it was decided to narrow down the area for which we 
would ‘gap-fill’ council data to activity spaces in the Strat-
ford and South Taranaki District Council Regions. Before 
commencing analysis, all GIS datasets were converted to 
the NZTM2000 Mercator projection [76] for consistency. 
NZTM2000 is commonly used for small scale mapping 
in Aotearoa and it has a unit of metres, allowing for the 
meaningful mapping of distances.

Stage 2: activity spaces and coordinates
In this study, child-specific activity spaces were created 
to estimate the environments that individual children in 
the Whānau Pakari study were potentially exposed to. 
Common locations where children spend time are likely 
to include the area around their home and school, and 
the route between these two settings. In light of the pre-
vious literature in this area outlined in the introduction, 
individual child-specific activity spaces were developed 
for each participant in the KYNS study using ArcGIS 
10.7.1. Participant residential addresses were geocoded 
and an 800  m road network buffer around children’s 
home addresses and their nearest school was created. A 
200 m buffer around the estimated route between home 

Fig. 3 A hypothetical activity space
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and school was also created and included in the activity 
space to link the home and school environment. Figure 3 
shows a hypothetical activity space.

Stage 3: deriving coordinates and accessing GSV images
Once activity spaces had been created, they were used 
to define the area in the Stratford and South Taranaki 
districts within which missing data would be collected 
using GSV images. There were 41 activity spaces within 
the study area, and these spaces contained more than 
200,000 m of road network. Points at 35-m intervals were 
generated along the road network within each activity 
space. A sensitivity analysis was carried out on one activ-
ity space to determine the appropriate distance between 
points along the road network that would both ensure 
comprehensive coverage of each activity space, while also 
minimising the total number of GSV images. Distances 
of 10, 20 30 40 and 50  m between points on the road 
network (and corresponding coordinates) were tested. 
Distances of 10  m and 20  m resulted in a high number 
of ‘duplicate’ or very similar GSV images being down-
loaded. Conversely, distances of 40 m and 50 m between 
points resulted in gaps and meant that features could not 
always be seen in consecutive GSV images, and therefore 
there could be some features that were missed. Thirty-
meter distances provided good coverage of the test area, 
but also resulted in many images being downloaded and 
still produced many duplicates. As a result, a distance of 
35 m was tested and determined to be the most appropri-
ate for the purposes of this study. Thirty-five metres was 
used as this distance reduces the total number of images 
that need to be downloaded and manually reviewed, 
while ensuring that all portions of a street and all features 
of the environment are captured in the GSV images that 
are downloaded. In total, 6593 points were created. The 
coordinates of each point (using the WGS1984 coordi-
nate system) were then derived and used to download 
corresponding GSV images for the period 2012–2016.

To assess the temporal validity of the data provided by 
New Plymouth District Council (NPDC), the locations of 
all ‘point’ data, including public transportation, pedes-
trian crossings, and speed bumps in the NPDC region 
were converted to WGS1984 coordinates. In total 826 
coordinates were derived and were then used to down-
load corresponding GSV images for the period 2012–
2016 (the period of the Whānau Pakari trial).

To address objective (3), the locations of food out-
lets across the Taranaki region were identified using 
two open-source approaches. The freely available 
‘Zenbu’ database lists businesses in Aotearoa, and all 
food businesses in the Taranaki region were extracted 
and geocoded. The second approach used the ‘Google 
Places’ function in the R ‘googleway’ API package [74]. 

The googleway package allows users to query Google 
Maps for information on a variety of categories includ-
ing type establishments, a geographic location and 
a search radius. To create a list of food outlets in the 
Taranaki region, a search radius of 30 km was applied 
to 19 locations across the region, and the following 
place tags relating to food outlets were used: bak-
ery, café, convenience store, gas station, liquor store, 
meal takeaway, park, restaurant, shopping mall, and 
supermarket. A CSV file of outlet names, coordinates, 
and type of establishment was produced, cleaned 
and duplicates were removed. Finally, the Zenbu and 
Google datasets were combined, and any remaining 
duplicate records were removed. The coordinates of 
each listed food outlet were then used to download 
GSV images for each location to validate both the spa-
tial and temporal accuracy of this open-source data.

While current and historic GSV images can be 
manually downloaded from Google Maps, it is more 
efficient to automate this process when accessing 
thousands of images. The ‘streetview’ python pack-
age, originally developed by Letchford [75] was modi-
fied by Zhang [51], further adapted by this paper’s 
author JW, and then used to automatically download 
GSV images based on the coordinates derived from 
stage 2. For each coordinate four images with differ-
ent compass headings were downloaded to give a 360º 
view of the location. The modified streetview pack-
age also allowed for images from specific years to be 
requested. GSV images taken during the period of the 
Whānau Pakari trial (2012–2016) were considered ‘in 
range’ while images taken outside these dates were 
filtered out and not downloaded. Finally, the pack-
age also created a CSV file which recorded key infor-
mation associated with each downloaded image. This 
included an image ID (the same as the ID of the coor-
dinates it is associated with), the coordinates from 
which the image was taken, and the month and year 
that the image was taken. In total 28,078 GSV images 
were downloaded in stage 3.

Stage 4: coding environmental features from GSV images
Three research assistants (RAs) were trained to code 
GSV images and provided with a detailed set of instruc-
tions (developed based on Egli’s [77] data collection pro-
tocol), a data dictionary, training images, and a checklist 
in the form of an excel spreadsheet to record data into. 
Environmental features of interest were features that had 
not been provided in one or more district council dataset, 
features that could be readily identifiable in GSV images, 
as well as food outlets and physical activity features. 
These included: footpaths, on street parking, pedestrian 
crossings, speed bumps, traffic calming signs, public 



Page 9 of 15Whitehead et al. Int J Health Geogr           (2021) 20:37  

transportation, food outlets—including ‘unexpected 
sources of food and drink’ such as petrol stations [78], 
and physical activity features such as parks, playgrounds, 
and sports facilities. During formal data collection RAs 
were provided with batches of GSV images and worked 
individually to code the features. When RAs completed 
each batch of images, any difficulties that arose with cod-
ing was discussed with JW and ND and instructions were 
further refined. If the main function of a business was 
unclear, JW clarified this by searching the locations using 
Google to find more information. A randomly selected 
subset of 10% of images were reviewed by JW to ensure 
that features were continuing to be accurately identi-
fied and coded by all RAs. If errors had occurred, then 
retraining was conducted as needed. If no errors were 
found, then RAs were provided with the next batch of 
images.

Stage 5: geospatial data and descriptive statistics
Each excel sheet of results was merged into a single CSV 
file which included the coordinates of each GSV image, 
and any environmental features recorded at that loca-
tion by the RAs. These coordinates were mapped in 
ArcGIS 10.7 using the ‘Display XY Data’ feature. A new 
shapefile for each feature was then created by select-
ing ‘points’ where that feature was marked as present. 
This process was straightforward for point data such as 
public transportation or food outlet locations. To cre-
ate shapefiles for ‘line’ features such as footpaths, we 
first mapped all coordinates with ‘footpaths’ as a tagged 
feature. We then calculated a 20 m buffer around these 
points to recognise that footpaths are not located at a 
single point, and that it is reasonable to expect that a 
footpath is visible 20  m from the location that a GSV 
image was captured. 20  m was used rather than 35  m 
because neighbouring coordinates would still have 
overlapping buffers at this distance. The buffer layer 
was then used to ‘clip’ the road network layer, with the 
resulting shapefile representing sections of the road 
network within the 41 selected activity spaces that also 
have a footpath. Once shapefiles of features identified 
using GSV were created, the ‘merge’ function was used 
to combine each ‘new’ shapefile with a copy of the origi-
nal council-provided-data to create a gap-filled dataset. 
Shapefiles of validated selected New Plymouth District 
Council data and food outlets were considered to rep-
resent temporally accurate versions of the original data-
sets, and were not merged with the original data.

Simple descriptive statistics were calculated to outline 
how many novel features were identified in the 41 activity 
spaces, as well as the number of NPDC provided features 
and food outlets that could be temporally validated using 
GSV images.

Results
Although GSV currently provides coverage for all pub-
lic roads in Aotearoa, there may have been gaps in early 
versions of the service. Therefore, GSV images may not 
always be available for specific years. Overall, of the 
34,168 images requested using the Google API using our 
modified python package, 28,078 (82%) of the returned 
images were taken between 2012 and 2016, while 6090 
(18%) were out-of-range. Research assistants took a com-
bined 98 h to review in range images and identify envi-
ronmental features of interest. We mapped the locations 
of both GSV image requests and out-of-range images that 
were returned and examined their spatial distribution. 

Figure 4 displays the locations of all requested images 
and highlights the locations where an ‘out-of-range’ 
image was returned. Figure 4 indicates that out-of-range 
images are distributed evenly across the region and do 
not appear to be skewed towards any particular area.

Of the 26,372 requests for GSV images in the Strat-
ford and South Taranaki districts, 21,665 (82%) in range 
images were returned. A total of 5166 coordinates with 
environmental features of interest were identified across 
the 41 activity spaces, and are listed in Table 4.

Of the 3304 requests for images relating to New Plym-
outh district council provided data, 2264 (69%) were in 
range. From these images, RAs were able to validate the 
presence of 402 features, an overall validation rate of 
49%. Table  5 describes the number and proportion of 
temporally validated NPDC data points.

In total, 4492 requests for GSV images of 1123 poten-
tial food outlets (derived from Zenbu and Google Maps) 
were sent, returning 4149 (92%) in range images. RAs 
were able to validate the presence of 664 food outlets, an 
overall validation rate of 55%. Figure  5 shows food out-
lets and NPDC features that were identified and validated 
using historic GSV images.

Discussion
The aim of this paper was to outline an approach to test 
the sensitivity and specificity of GIS datasets using GSV 
images. We have described an approach that can be 
applied to both ‘filling gaps’ and examining the temporal 
validity of GIS datasets. A substantial number of features 
were identified through this approach, highlighting the 
limitations of many GIS datasets. Researchers should not 
assume that secondary GIS datasets are complete and 
temporally valid.

The major finding of this study was that over 5000 loca-
tions were identified as having relevant features of inter-
est that were not included in council datasets. These 
locations were within activity spaces only (a subset of 
the entire council regions) and therefore the total num-
ber of missing features in the council datasets is likely to 
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be much larger. Another key finding was that 402 (49%) 
features in the New Plymouth District, and 664 (55%) 
food outlets across the Taranaki region were temporally 
validated using historic GSV images. While the GSV 
approach has resulted in a reduction in the total num-
ber of NPDC features and food outlets, it has improved 
the sensitivity and specificity of these datasets by only 
including features that were definitely present during 
the 2016–2016 study period. These validation rates are 

relatively low. While further investigation is needed, this 
suggest that secondary GIS datasets provided by organi-
sations such as district councils or open-source reposito-
ries cannot be assumed to be complete or have temporal 
validity. Researchers should therefore consider triangu-
lating a sample of their GIS datasets to estimate levels 
of completeness and accuracy. While the availability of 
GIS data were limited for the more rural councils (Strat-
ford and South Taranaki) in the Taranaki region, our 
results displayed in Fig. 4 suggest that GSV image cover-
age was similar for both rural and urban areas, suggest-
ing that our approach is likely to be applicable to other 
mixed urban–rural contexts in Aotearoa, and potentially 
internationally.

Fig. 4 The spatial distribution of all requested GSV images, and locations where ‘out-of-range’ results were returned

Table 4 Environmental features of interest identified in activity 
spaces using an historic GSV approach

‡ NB: This number only includes food outlets that were identified in activity 
spaces, and does not include the 644 food outlets validated using open-source 
data

Feature Coordinates 
identified (n)

% (row)

Footpath 3378 65.0%

Cycleways 9 0.2%

Public transport 21 0.4%

Pedestrian crossings 72 1.4%

On-street parking 1310 25.4%

Traffic calming features 230 4.5%

Parks, playgrounds, physical activity features 67 1.3%

Food outlets† 79 1.5%

Total 5166 100%

Table 5 NPDC provided data validated using historic GSV 
images

NPDC Feature Data 
points 
provided 
(n)

Data 
points 
validated 
(n)

Data points 
validated 
(%)

Public transport—Bus shelters 98 44 45

Public transport—Bus signs 410 179 44

Speed bumps 116 52 45

Pedestrian crossings 202 127 63

Total 826 402 49
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Despite the strengths of this approach, there are several 
limitations that should be noted. Firstly, it is difficult to 
determine how accurate the temporal validation of dis-
trict council and open-source data were. This is because 
the absence of a GSV image of a feature from a particu-
lar year may be due to several reasons. One is that the 
feature was in fact not present at that date. Another is 
that even if the feature did exist no GSV image was avail-
able for that date. Finally, although RAs were trained 
comprehensively, it is possible that some features were 
missed. Ideally, our approach to validating GIS datasets 
with GSV images should be empirically tested with date-
stamped data. The 4-year study period that we used as 
a date range for downloading GSV images of the study 
area is quite broad, meaning that built environments 
could change during this timeframe as councils update 
their infrastructure. Researchers should be aware of this 
limitation, and future work should examine how envi-
ronments change within study periods. Where coverage 
is good and images are frequently updated, this could 
also involve using GSV to monitor changes in advertis-
ing environments, the impacts of rapid urbanisation and 
housing intensification, and the impact of specific poli-
cies targeting built environments. A further limitation 
is that some features are not suited for detection using 
GSV images. Smaller features such as water fountains 
within parks or playgrounds are unlikely to be visible in 

GSV images which are taken from the road. It is impor-
tant to note that this research has focussed on using GSV 
to identify and validate environmental features of rel-
evance that are discussed in the research literature. This 
has not included features or locations of importance for 
the health and wellbeing of indigenous children, such as 
marae or landmarks of cultural significance. We recog-
nise that this is an important gap and intend to address it 
in future research.

While GSV has previously been used to assess envi-
ronments in health research and is a promising tool for 
conducting street audits [47], there are issues and limita-
tions that researchers should be aware of. The availability 
of GSV images varies globally, with better coverage in the 
‘Global North’ and no availability in large parts of Africa, 
South America, the Middle East, India, China, South 
East Asia, and Russia [44, 79]. These gaps in coverage are 
due to a range of political, economic, legal, and techni-
cal factors [45]. Information around frequency of collec-
tion is not made publicly available by Google, and their 
website only contains information about the equipment 
used to capture images, areas that are currently covered, 
and the areas they are currently imaging [79]. Research 
also suggests that image availability and the frequency 
of capture also varies within cities, with wealthier neigh-
bourhoods having higher rates of image availability, and 
more recently captured images [44]. The spatio-temporal 

Fig. 5 Food outlets and NPDC features that were temporally validated using historic GSV images
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instability of GSV imagery dates has also been critiqued 
as a weakness of using GSV to systematically observe the 
built environment [46]. The desktop version of GSV auto-
matically shows the most recently captured image for a 
location, and this capture date can vary, making it difficult 
to meaningfully compare locations. The approach that 
we have outlined overcomes this issue to some degree. 
By setting a date range of interest within which images 
will be downloaded, GSV can be ‘forced’ to provide more 
consistent images. Furthermore, researchers using our 
approach are able to determine their own temporal sen-
sitivity thresholds by setting a date range that includes 
a single month, or extending the period of interest to an 
entire decade. While not all locations will have images 
available within each specified date range, our approach 
offers more flexibility in addressing issues of the spatio-
temporal instability of desktop GSV imagery. While the 
recent inclusion of user-uploaded data, including images, 
into google maps could add variation to the quality and 
veracity of images, this user-uploaded data is incorpo-
rated as standalone unlinked “Photo Spheres” which are 
subject to acceptance criteria [45]. Furthermore, our 
described method only allows for the downloading of 
images captured by Google, which include a “Pano ID”, 
thereby excluding user-uploaded content. Our approach 
has potential for the validation of the temporal accuracy 
and overall completeness of open-source data, such as 
Open Street Map or Ordinance Survey POI data that can 
be downloaded for specific dates to align with study data. 
Provided that Google has captured an image in this same 
date range, our approach allows archived GSV images to 
be downloaded for the same specific dates. Our approach 
could therefore be one way to validate the accuracy and 
completeness of such open-source datasets, or secondary 
data that is provided with a timestamp.

This paper has outlined a practical approach for using 
GSV to supplement spatial and temporal information that 
is often missing from GIS datasets. Since GSV images 
have spatial coordinates associated with them, and can be 
accessed through an API, this is a potentially important 
approach for researchers to test and improve secondary 
GIS datasets. Although GSV images can be automatically 
downloaded, the process we have described is still reli-
ant on manual analysis of environmental features by RAs 
meaning that it would be time consuming for larger pro-
jects, and potentially prone to human error [80]. While 
our approach is currently practical for projects and stud-
ies undertaken in a small geographic area, there is poten-
tial for scalability and replication of this approach with 
different datasets and different spatial contexts, or for use 
validating a subset of spatial data to gauge the estimated 
completeness and temporal validity of an overall dataset. 
Furthermore, researchers have also demonstrated how 

feature identification could be automated [51, 56], and 
advances in machine learning and AI are likely to lead 
to future improvements in this area. Machine learning 
technology could be employed to further automate the 
process of validating, and filling gaps in GIS datasets. 
This could improve the efficiency and accuracy of stages 
4 and 5 of our methodology, allowing for larger scale 
analyses to be undertaken. This could involve larger study 
areas, more in-depth analyses of multiple environmen-
tal features, and potentially longitudinal examinations 
in changes to the built environment. The development 
of an entirely automated tool to download historic GSV 
images and harness machine learning to classify and 
geocode features of the built environment was beyond 
the scope of our current project, but would be very useful 
for assessing the accuracy and completeness of secondary 
GIS datasets. The original streetview python script has 
been made freely available for download from GitHub 
(https:// github. com/ robol yst/ stree tview) and our modi-
fied version is available on request.

Conclusion
Geospatial datasets are not always complete and may not 
include information on the temporal specificity of data. 
While this poses a significant limitation to retrospective and 
longitudinal studies examining the relationships between 
built environments and health outcomes, we have devel-
oped a practical approach for addressing these limitations. 
GSV images can be utilised to improve secondary GIS data.
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