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Abstract
Background  The burden of malaria in Kenya was showing a declining trend, but appears to have reached a plateau 
in recent years. This study estimated changes in the geographical distribution of malaria parasite risk in the country 
between the years 2015 and 2020, and quantified the contribution of malaria control interventions and climatic/ 
environmental factors to these changes.

Methods  Bayesian geostatistical models were used to analyse the Kenyan 2015 and 2020 Malaria Indicator Survey 
(MIS) data. Bivariate models were fitted to identify the most important control intervention indicators and climatic/
environmental predictors of parasitaemia risk by age groups (6–59 months and 5–14 years). Parasitaemia risk and 
the number of infected children were predicted over a 1 × 1 km2 grid. The probability of the decline in parasitaemia 
risk in 2020 compared to 2015 was also evaluated over the gridded surface and factors associated with changes in 
parasitaemia risk between the two surveys were evaluated.

Results  There was a significant decline in the coverage of most malaria indicators related to Insecticide Treated 
Nets (ITN) and Artemisinin Combination Therapies (ACT) interventions. Overall, there was a 31% and 26% reduction 
in malaria prevalence among children aged < 5 and 5–14 years, respectively. Among younger children, the highest 
reduction (50%) and increase (41%) were in the low-risk and semi-arid epi zones, respectively; while among older 
children there was increased risk in both the low-risk (83%) and semi-arid (100%) epi zones. Increase in nightlights and 
the proportion of individuals using ITNs in 2020 were associated with reduced parasitaemia risk.

Conclusion  Increased nightlights and ITN use could have led to the reduction in parasitaemia risk. However, the 
reduction is heterogeneous and there was increased risk in northern Kenya. Taken together, these results suggest that 
constant surveillance and re-evaluation of parasite and vector control measures in areas with increased transmission 
is necessary. The methods used in this analysis can be employed in other settings.
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Introduction
Malaria causes substantial disease and deaths, espe-
cially in sub-Saharan Africa (SSA). It was estimated that 
in 2022, there were approximately 249 million cases and 
608,000 deaths worldwide [1]. The World Health Orga-
nization (WHO) Afro-region contributed 94% of cases 
and 96% of deaths due to malaria. Efforts have been made 
to accelerate the reduction of malaria burden. In 2015, 
the World Health Assembly (WHA) adopted the Global 
Technical Strategy (GTS) for Malaria (2016–2030) to 
reduce malaria incidence and deaths by at least 90% by 
2030 [2]. However, in 2017, the GTS’s aim was off-course, 
leading to the launch of the High Burden to High Impact 
(HBHI) approach in 2018 by the WHO and the Roll Back 
Malaria partnership [3]. The HBHI approach supports 
11 countries that account for approximately 70% of the 
global burden to reduce their malaria burden and achieve 
the GTS 2025 milestones [3].

Similar strategies have been adopted and implemented 
in Africa. For instance, the Africa Union (AU) initiated 
the “Zero Malaria Starts with Me” campaign in 2021 with 
the goal of eliminating malaria by 2030 [4]. Addition-
ally, individual countries have developed strategies to 
fight malaria. For example, Kenya introduced the “Kenya 
Malaria Strategy (KMS) 2019–2023” which aimed at 
reducing malaria incidence and deaths by 75% of the 2016 
levels by 2023 [5]. The success of these strategies depends 
upon several factors including; optimal use of effective 
vector control tools, variability in climatic and environ-
mental factors, community awareness and involvement, 
strengthening the capacity of National Malaria Con-
trol Programs (NMCP) and encouraging partnerships 
[2, 5–8]. Monitoring the spatio-temporal distribution 
of parasitaemia risk, and estimating the effectiveness of 
interventions are essential in guiding implementation of 
targeted control measures and resource allocation.

Several studies have used geostatistical methods to 
map country-specific malaria risk in SSA [9–18] with 
the aim of informing NMCPs. In Kenya, earlier stud-
ies mapped malaria risk using empirical methods based 
on parasitological, demographic, geographical and cli-
matic data [19, 20]. However, more recent studies have 
employed model-based geostatistical mapping [10, 14, 
17]. These maps provide important information to the 
Kenyan NMCP about malaria zones and spatio-tempo-
ral changes in malaria risk over time, offering valuable 
insights for malaria control.

Mategula and Gichuki evaluated the heterogeneity and 
spatial drivers of malaria transmission at a 5 × 5 km2 spa-
tial resolution, using the Kenya 2020 malaria indicator 

survey (MIS) data [21]. In their analysis, they aggregated 
the data across all ages for children aged 0.5 to 14 years. 
However, the risk and severity of malaria differs by age 
group with children aged < 5 years more likely to have 
severe outcomes [22], while school aged children (5–14 
years) act as reservoirs of malaria parasites [23] without 
showing symptoms; therefore the probability of being 
tested may have been different. Additionally, most studies 
assess malaria risk in children < 5 years old, where control 
interventions are targeted, however, there is evidence to 
show that the risk of malaria shifted to older children 
after scale up of interventions [24]. Therefore, it is nec-
essary to evaluate changes in malaria risk in older chil-
dren as well. Furthermore, it is important to stratify the 
analyses by age groups, as we have previously found that 
aggregating ages may mask the effects of climatic pre-
dictors [25]. In addition to risk maps, it is important to 
inform the NMCP about the probabilities of risk reduc-
tion/ increase, and the risk by different age groups at fine 
spatial scales. Additionally, the joint effects of changes 
in control intervention coverage and climatic/environ-
mental factors on changes in parasitaemia risk remains 
underexplored.

Most studies, including previous Kenyan studies that 
use data from different sources such as MIS, use binomial 
models to map parasitaemia risk [10, 14, 17, 21]. How-
ever, malaria parasitaemia prevalence in Kenya is below 
10%, and most of the sampled MIS locations have zero 
prevalence [26, 27]. As Kenya and other countries with 
lower prevalence move towards malaria elimination, the 
commonly used binomial distribution may under-esti-
mate the probability of zero prevalence. Although not 
widely adopted for prevalence data, zero-inflated bino-
mial (ZIB) models can be used to account for the excess 
zeros [12].

The current study uses Bayesian geostatistical bino-
mial and ZIB models to assess the net effect of control 
interventions and climatic/ environmental factors on 
malaria parasitaemia risk by age group, and to predict 
parasitaemia risk at a spatial resolution of 1 km2 in Kenya 
during 2015 and 2020. In addition, this study estimates 
the population adjusted parasitaemia prevalence, maps 
fine scale probability of risk reduction between the two 
surveys, estimates number of infected children at every 
pixel during the two surveys and the effects of changes in 
control interventions and climatic/environmental factors 
between 2015 and 2020 on the geographical distribution 
of the changes in parasitaemia risk.

Keywords  Bayesian inference, Geostatistical modelling, Malaria indicator survey, Variable selection, Zero-inflated 
malaria models
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Materials and methods
Study setting and population
Kenya, located in East Africa, is home to 52 million peo-
ple [28], has a total landmass of 580,367 square kilome-
tres. It shares its borders with five countries: Ethiopia, 
Somalia, Tanzania, Uganda, and South Sudan. Kenya’s 
geography is diverse, featuring a long coastline along 
the Indian Ocean, coastal lowlands, savannahs, arid and 
semi-arid regions in the north, vast forests, highlands, 
and mountainous areas. Additionally, Kenya is divided 
into 47 administrative level 1 units referred to as coun-
ties with significant variability in climate, ranging from 
the tropical coast to the temperate inland and arid north-
ern regions. The coolest months are from June through 
August, while the warmest months are from December 
through March. Temperature and rainfall vary with alti-
tude, with the coastal areas, eastern plateaus, highlands, 
and northern plains recording temperatures between 18 
and 34  °C, 14–29  °C, 10–26  °C, and 33–38  °C, respec-
tively. Rainfall exhibits a bi-modal pattern, with long 
rains occurring from March to May and short rains from 
October to December. Total precipitation ranges from 
under 250 mm in the north and north eastern regions to 
1,270 mm in the coastal regions.

Malaria accounts for 13–15% of outpatient consulta-
tions, with approximately 70% of the population at risk 
[27]. Kenya is divided into five malaria epidemiological 
zones, including, the highland epidemic-prone areas, lake 
endemic areas, coast endemic areas, semi-arid seasonal 
epidemic areas, and low-risk epidemic areas [5]. Plasmo-
dium falciparum parasite is responsible for 96–99% of 
infections [27]. A map depicting the county outlines and 
the malaria epidemiological zones is provided in addi-
tional file 1, Figure A1.

The Ministry of Health distributed Insecticide-Treated 
Nets (ITNs) to high malaria transmission zones begin-
ning in 2006, targeting children aged under 5 years. 
Subsequent mass distribution of ITNs in 2011/2012, 
2014/2015 and 2017/2018 targeted all individuals living 
in the malaria-prone zones with the objective of achiev-
ing universal coverage (one net for two people). Tar-
geted indoor residual spraying (IRS) for vector control 
was employed in 12 counties from 2006 then expanded 
to 16 epidemic prone and 4 endemic counties during 
2010/2011 before being suspended after 2012 to address 
insecticide resistence issues [14]. However, in 2017, IRS 
activities resumed in two counties, Migori and Homa 
Bay, located in the Lake endemic zone [27]. Artemisinin-
based Combination Therapy (ACT) and rapid diagnostic 
tests (RDT) were introduced in 2006 and 2012 respec-
tively [14].

Data sources
MIS data
The MIS, designed to follow the Roll Back Malaria’s 
(RBM) monitoring and evaluation working group guide-
lines and national malaria strategies, provides repre-
sentative estimates of key malaria indicators. The 2015 
MIS was conducted in 6,481 households across 246 
clusters between July and August, 2015; while the 2020 
MIS took place in 7,952 households within 301 clusters 
between November and December, 2020 [26, 27]. All 
women aged 15–49 years in these households were eli-
gible for interviews, and finger or heal prick blood sam-
ples were collected from children aged 6 months to 14 
years for malaria testing. Children aged 6–59 months 
are referred to as children aged < 5 years in the text. The 
blood samples were tested on-site using the SD Bioline 
(Abbott Diagnostics, Korea) and CareStart Pf (Access Bio 
inc, NJ, USA) RDTs in 2015 and 2020, respectively, with 
results provided to the participants. Children who tested 
positive by RDT were either treated or referred to a heath 
facility for immediate treatment. Additionally, thick and 
thin blood films were taken to malaria reference labora-
tories for microscopy testing. For this analysis, we used 
data from 245 clusters in 2015 and 298 clusters in 2020, 
considering malaria positivity by microscopy. The cluster 
locations are displayed in Figs. 1 and 2.

Enviromental/ climatic data
Downscaled monthly day Land Surface Temperature 
(LSTD), night Land Surface Temperature (LSTN) and 
Normalized Difference Vegetation Index (NDVI) data 
were extracted from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) [29]. We obtained down-
scaled rainfall data from the Climate Hazards Group 
Infrared Precipitation with Station data (CHIRPS) [30]. 
Nightlights – which is a proxy for urbanization and socio-
economic status (SES) [31] – was obtained from National 
Oceanic and Atmospheric Administration - Visible Infra-
red Imaging Radiometer Suite (NOAA-VIIRS) [32] while 
land cover data was obtained from Copernicus [33]. Dis-
tance to permanent water bodies was estimated as the 
shortest Euclidean distance from the cluster centroids to 
the nearest major water body using the 100 × 100 m land 
cover data from Copernicus. Altitude for each cluster 
was estimated from the Shuttle Radar Topographic Mis-
sion (SRTM) [34] using the digital elevation model. The 
climatic indicators of temperature, vegetation, and rain-
fall were summarised by calculating their average values 
over the six-month period preceeding the end of the MIS. 
These average values were extracted at the survey cluster 
locations. Detailed descriptions of these data sources and 
their spatial and temporal resolutions are displayed in 
additional file 1, Table A1.
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Fig. 1  Observed malaria prevalence in children aged < 5 years at survey locations in 2015 (A) and 2020 (B); predicted parasitaemia prevalence in 2015 
(C) and 2020 (D); coefficient of variation of the predicted prevalence in 2015 (E) and 2020 (F); estimated number of infected children per km2 in 2015 (G) 
and 2020 (H)
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Fig. 2  Observed malaria prevalence in children aged 5–14 years at survey locations in 2015 (A) and 2020 (B); predicted parasitaemia prevalence in 2015 
(C) and 2020 (D); coefficient of variation of the predicted prevalence in 2015 (E) and 2020 (F); estimated number of infected children per km2 in 2015 (G) 
and 2020 (H)
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Interventions
Data on ITN ownership and use, ACT use, and health 
seeking were extracted from the MIS. Based on these 
data, indicators were calculated using the definitions 
provided by RBM [35]. These indicators included: (i) the 
proportion of households with at least one ITN; (ii) the 
proportion of households with one ITN for every two 
people; (iii) the proportion of the population with access 
to an ITN within their household; (iv) the proportion 
of the population that slept under an ITN the previous 
night; (v) the proportion of children under 5 years old 
who slept under an ITN the previous night (vi) the pro-
portion of existing ITNs used the previous night; (vii) the 
proportion of children with fever who sought care; and 
(viii) the proportion of fever episodes treated with ACTs. 
Notably, we excluded IRS use from this analysis as this 
variable was not collected during the 2020 MIS.

Population data
Gridded high-resolution population data for 2015 and 
2020 were obtained from Worldpop at a 100 × 100 m2 
spatial resolution [36]. The United Nations Population 
Division data on population structure [37] were applied 
to calculate the number of children aged < 5 and 5–14 
years old for each year. Specifically, the Worldpop data 
were multiplied by the proportion of children in each age 
group. For children aged < 5 years, the proportions were 
14.5% and 13.2% in 2015 and 2020, respectively, while for 
those aged 5–14 years, the proportions were 27.0% and 
25.7% in 2015 and 2020, respectively.

Statistical analyses
Data management and statistical analyses were con-
ducted in R version 4.1.3 [38]. Geostatistical model and 
variable selection, model fitting and kriging were car-
ried out using Integrated Nested Laplace Approxima-
tion (INLA) [39]. Climatic/environmental variables were 
categorized into groups based on their tertiles, which 
divides the data into three equal parts. Both continuous 
and categorical forms of the variables were assessed for 
their association with parasitaemia risk. The selection 
criterion was based on the Deviance Information Crite-
rion (DIC). Priority was given to the form with the lowest 
DIC, except when the difference in DIC was smaller than 
5, in which case the continuous form was prioritized. 
Variables were standardized (scaled using their mean and 
standard deviation) to allow for a relative comparison of 
covariate effects.

Bayesian geostatistical ZIB models were fitted to the 
MIS data separately at each survey year and age group 
through stochastic partial differential equations (SPDE) 
to: (i) estimate the effects of control interventions and 
climatic/environmental factors on parasitaemia risk; 
(ii) obtain spatially explicit predictions of parasitaemia 

prevalence and of the probability of a decline between the 
two survey years; (iii) estimate the population-adjusted 
prevalence, number of children infected with malaria 
parasites and their relative reduction by epidemiological 
zone and county; and (iv) assess the effects of the changes 
in coverage of control intervention coverage and climatic 
factors between 2015 and 2020 on the geographical dis-
tribution of the changes in parasite risk. Bivariate geo-
statistical models were fitted to assess the association 
between individual predictors and parasitaemia risk and 
to determine the best distributional assumption between 
binomial and ZIB based on the DIC. Rainfall and night-
lights were included in the multivariable models a priori 
guided by previous work in Africa [10]. Subsequently, 
other covariates including socio-demographic, climatic 
and intervention factors were added and the model’s fit 
and predictive ability evaluated.

Bayesian model formulation
Let Yi  be the number of children who tested positive, 
and Ni,  be the total number of children tested in clus-
ter si. Typically, Yi  is assumed to come from a binomial 
distribution Yi ∼ Bin(Ni, pi) where pi  is the probabil-
ity of parasitaemia at cluster si.  However, in cases where 
excess zeros are observed, the binomial distribution may 
not be able to estimate the zero prevalence probability 
or correctly identify covariates associated with the out-
come. We fitted a ZIB model Yi ∼ ZIB (Ni, pi, θi)  which 
assumes two sources of zeros: θ i % (mixing probabilities) 
of structural zeros and (1− θ i) % arising from the bino-
mial distribution. The model is defined as

	
Yi|pi, θ i ∼

{
0 with probability θ i

Bin (Ni , pi ) with probability 1− θ i

where the probability θ i  is modelled using covariates and 
is defined as logit(θ i) =

∑
m
k=1α

TX (si) where X (si)  
are covariates at location si  and α  = (α 1, α 2, . . . , α k )T 
are the regression coefficients. The relationship between 
pi  and the predictors was modeled via the equation 
logit (pi) = β TX (si) + ω (si) where X (si)  is the set of 
predictors at locationsi , β  = (β 1, β 2, . . . , β k )T is the 
vector of regression coefficients and ω are the spatial ran-
dom effects included in the model via the Matern covari-
ance function. The ZIB models were fitted using INLA’s 
0binomial function.

A regular grid at 1 × 1 km2 resolution was created, and 
parasitaemia risk was predicted at the centroids of the 
grid cells (unsampled locations) through Bayesian krig-
ing based on the model with the best predictive abil-
ity (the least root mean square error (RMSE), the least 
mean absolute error (MAE) and the highest correlation 
coefficient at each survey year and age group). For each 
age group, the probability of reduction in parasitaemia 
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prevalence in 2020 compared to 2015 was estimated. In 
particular, 100 samples were drawn from the posterior 
predictive distribution of the parasitaemia prevalence at 
each grid cell. The difference in prevalence between these 
samples was calculated, with a value of one assigned 
if there was a decline, and zero otherwise. These sam-
ple-based differences were then averaged to obtain the 
probability of parasitaemia reduction. The posterior pre-
dictive distribution of the number of infected children 
was determined by multiplying the posterior samples at 
each grid-cell with the respective, age-specific popula-
tion data. The overall, epidemiological zone-specific, and 
county-specific numbers of infected children were cal-
culated by summing the pixel level estimates within the 
country, zones and counties, respectively. The population 
adjusted prevalence was obtained by dividing the total 
number of infected children by the age-specific popula-
tion. Quantiles of the sample-based posterior predictive 
distribution of the population-adjusted prevalence were 
used to calculate 95% Bayesian credible intervals (BCIs) 
for the above quantities.

A separate analysis was conducted to assess the effects 
of the changes in coverage of control intervention indi-
cators and climatic factors between 2015 and 2020 on 
the geographical distribution of the changes in parasi-
taemia risk. In particular, a Bayesian geostatistical ZIB 
model was fitted to the parasitaemia survey data of 
2020. The parasite prevalence of 2020 at a given location, 
transformed on the logit scale, was modelled as a func-
tion of the logit transformed parasitaemia prevalence of 
2015 (with the regression coefficient constrained to be 
equal to 1), the effect of control intervention coverage 
and climatic/environmental factors in 2020 adjusted for 
the difference in control interventions coverage and the 
difference of climatic/environmental factors between 
the two survey years. Geographical misalignment of the 
cluster locations between the two surveys was addressed 
by extracting the predicted parasitaemia risk of the 2015 
survey and 2015 climatic covariates at the 2020 sur-
vey locations. The difference in ITN coverage between 
the two surveys was estimated at the county level. To 
increase the number of survey locations, we included the 
2014 demographic and health survey (DHS) clusters to 
the 2015 MIS clusters to estimate the ITN coverage dur-
ing 2015 [26, 40].

Odds ratios (OR) and adjusted ORs (aOR), quantify-
ing the effect of the predictors were summarized by their 
posterior median and the corresponding 95% BCIs. The 
effects were considered statistically important if their 
95% BCI did not include one. Throughout this paper, we 
adhere to terminology consistent with Bayesian infer-
ence. Specifically, odds ratios that exclude one in their 
95% BCIs are referred to as statistically important, rather 

than “statistically significant” commonly used in frequen-
tist inference.

Ethical consideration
The protocols for the Kenya Malaria Indicator Surveys 
were reviewed and approved as previously described [26, 
27]. We use aggregated secondary data for this analysis 
and do not attempt to identify the individuals involved in 
the surveys. Further, permission to use these data for our 
study was sought and approval obtained from the DHS 
program.

Results
Descriptive analysis
This analysis included 10,037 children in 2015, with 3,429 
(34.2%) aged < 5 years. In 2020, the analysis involved 
11,491 children, with 3,725 (32.4%) falling in the < 5 years 
age group. Overall, there was a significant decline in the 
prevalence of parasitaemia from 8.2% in 2015 to 5.6% in 
2020 (p-value < 0.01). Over the two surveys, there was a 
lower prevalence among children aged < 5 years com-
pared to children aged 5–14 years; with rates of 5.0% vs. 
9.9% in 2015 and 3.0% vs. 6.9% in 2020. The lake endemic 
epidemiological zone had the highest prevalence (26.6%) 
in 2015, but in 2020 there was a reduction in parasitae-
mia in the lake, coast-endemic, and highlands zones. In 
contrast, there was an increase observed in the semi-arid 
(from 0.5 to 1.8%) and the low-risk (from 0.3 to 0.4%) 
epidemiological zones. These results are summarized in 
Table 1 and Table A2 in additional file 1.

There was a decline in ITN ownership and use between 
the two surveys. For the ITN ownership indicators, the 
proportion of households with at least one ITN, the pro-
portion of households with at least one ITN for every 
two people, and the proportion of individuals with access 
to an ITN in their household declined by 22%, 28% and 
15%, respectively (Table  1). For the ITN use indica-
tors, the proportion of individuals that reported having 
slept under an ITN the previous night and the propor-
tion of children under 5 years old who slept under an 
ITN declined by 27% and 25%, respectively, whereas 
the proportion of existing ITNs used the previous night 
increased by 7%. Furthermore, the proportion of children 
with fever for whom care was sought, and the proportion 
of fever episodes treated with ACTs declined by 11% and 
26%, respectively.

Table  1 summarizes the changes in climatic condi-
tions. The mean rainfall, crop cover, and nightlights all 
increased in 2020, while there was a decrease in LST day 
and the distance from cluster centroids to the perma-
nent water bodies. Fine spatial scale changes in rainfall, 
LSTD, nightlights and ITN use are presented in Figure 
A2 in additional file 1, where we observed increased rain-
fall in the western part of Kenya, reduced temperature in 
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Turkana county and parts of central Kenya, and increased 
nightlights in all the counties, while changes in ITN use 
showed no clear clustering.

Model and variable selection
The geostatistical ZIB models consistently outperformed 
their binomial counterparts, evidenced by lower DIC 
values in all bivariate models. For children under 5 years 
old, important predictors of parasitaemia risk included 
rainfall, LST, nightlights, altitude, distance to permanent 
water bodies, and the proportion of existing ITNs used 
during the previous night, or the proportion of individu-
als that used ITN the previous night were important pre-
dictors of parasitaemia risk. Similarly, these variables, 
along with ITN ownership indicators, were important 
predictors of parasitaemia risk among older children. 
Detailed results can be found in Table A3 and Table A4 
(Additional file 1).

For prediction of parasitaemia risk in 2015, 57 and 120 
model combinations were fitted for children aged < 5 and 
5–14 years, respectively. For the 2020 survey 57 and 26 
model combinations were fitted for children aged < 5 and 
5–14 years, respectively. The top five models for each 
group had comparable predictive ability based on RMSE, 
MAE and correlation coefficients, Table A5 (Additional 

file 1).  The champion model in each group was used in 
plotting the final maps.

Effects of climatic/environmental factors and interventions 
on parasitaemia prevalence
Posterior estimates of the effects of control interven-
tions and climatic factors on parasitaemia risk in 2015 
and 2020 for children aged < 5 years and 5–14 years are 
shown in Tables  2 and 3, respectively. In 2015, increase 
in nightlights and altitude was associated with a reduced 
risk among younger children, while an increase in rainfall 
and the proportion of households with at least one ITN 
were associated with an increased risk. Nightlights was 
also associated with reduced risk in older children. In 
2020, increase in the proportion of individuals sleeping 
under ITNs was associated with a reduced risk in both 
age groups, while an increase in the use of ACT had a 
positive effect.

Spatio-temporal trends of parasitaemia risk during 2015 
to 2020
The geographical distribution of the parasitaemia risk, 
predicted over the 1 × 1 km2 grids among children 
aged < 5 years and children aged 5–14 years is presented 
in Figs.  1 and 2, respectively. The risk among children 

Table 1  Description of the 2015 and 2020 malaria indicator survey data and climatic/environmental factors
Variables/ Indicators MIS 2015 MIS 2020 2015 indicators at 

2020 locations b
p-val-
ue c

Number of Clusters 245 298
Number of households 6,481 7,952
Number of children tested 10,037 11,491

% (95% CI) % (95% CI)
Parasitaemia prevalence 8.2 (7.7,8.7) 5.6 (5.2,6.1)
Malaria Interventions (%)1

  Proportion of households with at least one ITN 62.5 (60.8,64.2) 49.0 (47.0,51.1) 65.7 (63.4,68.0) < 0.01
  Proportion of households with at least one ITN for every two people 40.0 (38.8,41.2) 28.7 (27.7,29.6) 37.5 (36.0,39.0) < 0.01
  Proportion of individuals with access to an ITN in their household 52.5 (51.9,53.2) 44.9 (44.3,45.5) 51.5 (49.6,53.4) < 0.01
  Proportion of individuals that slept under an ITN the previous night 47.6 (46.1,49.1) 34.9 (33.2,36.6) 46.2 (44.3,48.2) < 0.01
  Proportion of children under 5 years old who slept under an ITN 56.1 (53.8,58.4) 42.0 (38.9,45.2) 57.2 (55.1,59.3) < 0.01
  Proportion of existing ITNs used the previous night 75.2 (74.3,76.1) 80.2 (79.4,81.0) 78.3 (76.9,79.6) 0.42
  Proportion with fever who sought care 71.9 (68.7,0.75) 63.6 (57.1,69.8) 71.7 (70.8,72.6) < 0.01
  Proportion of fever episodes treated with ACT 24.8 (21.9,28.0) 18.4 (15.2,21.6) 24.6 (22.3,26.8) 0.01
Climate/environmental factors2

  Rainfall (mm) a 114.3 (107.9,120.8) 156.1 (146.0,166.2) 125.9 (119.9,131.9) < 0.01
  LST day a 32.0 (31.4,36.6) 31.1 (30.5,31.7) 32.0 (31.5,32.5) 0.02
  LST night a 16.1 (15.5,16.6) 16.6 (16.1,17.1) 16.6 (16.1,17.0) 0.99
  Nightlights a 1.7 (1.1,2.3) 1.8 (1.3,2.3) 1.2 (0.8,1.6) 0.04
  NDVI a 0.5 (0.5,0.5) 0.6 (0.6,0.60) 0.5 (0.5,0.6) 0.24
  Crop coverage (proportion) 0.3 (0.2,0.4) 0.4 (0.3,0.4) 0.4 (0.3,0.4) 0.06
  Altitude (m) 1332.9 

(1242.3,1423.5)
1286.6 
(1214.1,1359.2)

-

  Distance to permanent water (km) 55.9 (46.8,65.0) 44.3 (39.8,48.9) -
a Six months average; b County level control interventions estimated from 2015 MIS and 2014 DHS; c compares 2020 MIS to 2015 indicators at 2020 locations 1 
Proportions compared using chi-square test, 2 Continuous variables compared using t-test
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aged < 5 years was high in the western and coastal parts 
of the country in both surveys. These regions had the 
lowest coefficient of variation, while Nairobi had the 
highest. Overall, the population adjusted risk reduction 
among younger children in 2020 relative to 2015 was 
31.3%. Notably, parasitaemia risk expanded to new areas 
north of the country by 2020 contributing to the 41.2% 
increase in parasitaemia risk observed in the semi-arid 
seasonal zones. When compared by counties, there was a 
74% reduction in parasitaemia risk in Homa Bay County, 
and an increase in Turkana County (3–4 times) between 
the two surveys.

A similar pattern was observed in the geographical dis-
tribution for children aged 5–14 years, with a risk reduc-
tion of 25.7% between the two surveys. Parasitaemia risk 
doubled in the semi-arid and low-risk seasonal zones 
during 2020. The greatest reductions in endemic zones 
were observed in Homa Bay (76.5%), Vihiga (69.1%) 
and Kwale (84.3%) counties. The highest increase was 
observed in the semi-arid seasonal zone, including Bar-
ingo (5 times), and Turkana (5–6 times).

Figure  3 presents the pixel-level relative reduction 
in parasitaemia risk in children aged < 5 years (A) and 
children aged 5–14 years (B). This figure demonstrates 
that there was no reduction in parasitaemia risk in the 
northern part of the country, the highland epidemic 
regions and Nairobi between the two surveys. County-
specific population-adjusted parasitaemia prevalence are 

provided in Table A6 and Table A7 (Additional file 1) for 
children aged < 5 and 5–14 years, respectively.

Estimates of the number of infected children (in 
thousands)
This study estimated that, during the 2015 and 2020 
surveys, there were 421.3 (342.2-517.9) and 296.2 
(197.2-488.1) thousand infected children aged < 5 years, 
respectively, which translates to 29.7% reduction in the 
number of infected children (Table  4). The number of 
infected children aged 5–14 years was estimated to be 
1007.0 (832.1-1182.6) and 800.8 (629.8-1075.9) thousand 
during the 2015 and 2020 surveys, respectively. This cor-
responded to a 20.5% overall reduction in the number 
of infected older children. The highest reduction in the 
number of infected children aged < 5 was observed in the 
low-risk zone at 50.1%, whereas for children aged 5–14 
years, the highest reduction was in the coast endemic 
zone at 48.2%. County-specific relative reduction in 
number of infected children are presented in Table A6 
and Table A7 (Additional file 1) for children aged < 5 and 
5–14 years, respectively.

Effects of intervention coverage on the changes of 
parasitaemia risk
Table 5 summarizes findings for the association between 
changes in coverage of interventions and changes in cli-
matic/environmental factors between 2015 and 2020. 

Table 2  Effects of climatic/ environmental factors and interventions on parasitaemia prevalence in children aged 6–59 months
Predictors 2015 2020

OR (95% BCI) aOR (95% BCI) OR (95% BCI) aOR (95% BCI)
Climatic/environmental factors
Rainfall 2.01 (1.03,3.82)* 1.42 (0.72,2.75) 0.64 (0.32,1.27) 0.81 (0.41,1.58)
Day LST 1.10 (0.60,2.00) 2.40 (1.13,5.11)* 1.28 (0.45,3.38)
Night LST 2.31 (1.11,4.88)* 1.41 (0.48,3.96) 3.73 (1.52,9.00)* 1.10 (0.31,4.41)
NDVI 1.20 (0.73,1.96) 1.03 (0.49,2.39)
Nightlights 0.31 (0.15,0.67)* 0.30 (0.14,0.63)* 0.74 (0.44,1.23) 0.68 (0.40,1.16)
Altitude 0.18 (0.07,0.43)* 0.23 (0.07,0.81)* 0.26 (0.10,0.75)* 0.37 (0.10,1.44)
Distance to permanent water 0.53 (0.17,0.77)* 0.82 (0.26,2.70) 0.73 (0.29,1.96)
Crop cover 2.22 (0.94,4.22) 1.16 (0.57,2.37)
Interventions
Proportion of households with at least one ITN 0.93 (0.55,1.59) 0.95 (0.53,1.67)
Proportion of households with at least one ITN for every two people 0.88 (0.57,1.34) 0.63 (0.44,0.91)*
Proportion of individuals with access to an ITN in their household 0.64 (0.36,1.11) 0.71 (0.46,1.10)
Proportion of individuals that slept under an ITN the previous night 0.88 (0.53,1.41) 0.55 (0.34,0.88)* 0.56 (0.35,0.87)*
Proportion of children under 5 years old who slept under an ITN 0.76 (0.45,1.26) 0.78 (0.53,1.15)
Proportion of existing ITNs used the previous night 1.72 (1.09,2.65)* 1.42 (0.88,2.21) 0.97 (0.58,1.60)
ACT use 0.96 (0.74,1.29) 1.03 (0.81,1.32)
Mixing proportion 0.22 (0.07,0.97) 0.31 (0.06,0.93)
Spatial variance 8.26 (0.39,32.23) 26.92 (7.56,61.87)
Range (km) 579.29 

(87.42,1434.99)
804.44 
(430.98,1322.5)

DIC 366.80 362.05
*Statistically important
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An increase in nightlights was associated with a reduc-
tion in parasitaemia odds in 2020 compared to 2015 
(aOR = 0.38, 95% BCI: 0.17–0.79), and (aOR = 0.66, 95% 
BCI: 0.41–1.04) among children aged < 5 and 5–14 years, 
respectively.

Discussion
This study presents geostatistical analysis of the Kenya 
2015 and 2020 MIS data using ZIB models to identify 
important intervention and climatic predictors and their 
net effect on malaria parasitaemia risk, produce malaria 
risk maps, define changes in malaria risk (including prob-
abilities of parasitaemia risk reduction), and estimate the 
number of children infected with malaria parasites by 
age groups. The study reveals that ITN use,  rainfall and 
nightlights indicative of urbanization and improved SES, 
exhibit good predictive ability for malaria parasite risk in 
Kenya. Overall, the study observes a reduction in malaria 
prevalence between the two surveys, although this reduc-
tion is notably heterogeneous, with certain areas expe-
riencing increased parasitaemia risk, particularly the 
semi-arid seasonal malaria epidemiological zone. These 
findings offer valuable insights for the Kenyan NMCP in 
focussing or adjusting control efforts and aiding county 

health departments in implementing localized malaria 
control interventions. Furthermore, the ZIB model 
employed in this analysis holds potential for estimating 
prevalence in countries with low parasitaemia risk and 
those progressing towards elimination.

Rainfall was an important driver of parasitaemia risk in 
2015, aligning with previous findings [9, 41]. An increase 
in rainfall was associated with increased parasitaemia 
risk. However, in the 2020 survey, rainfall was not an 
important predictor despite its increase. This could be 
attributed to the counter effect of increased nightlights 
between the two surveys. Increased nightlights indicate 
more urbanization and improved SES which could sug-
gest better housing that minimizes human-vector con-
tact. A similar analysis found no association between 
rainfall and parasitaemia risk in Burkina Faso, which the 
authors attributed to the low transmission season when 
the survey was conducted [42]. Though climate change 
may alter seasonal patterns of rainfall in the future, rain-
fall seasons are still within the expected months in Kenya. 
If implemented, and aligned to the rainy seasons, sea-
sonal malaria chemoprevention (SMC), especially among 
older children who act as reservoirs, may help in reduc-
ing the burden of malaria [24].

Table 3  Effects of climatic/ environmental factors and interventions on parasitaemia prevalence in children aged 5–14 years
Predictors 2015 2020

OR (95% BCI) aOR (95% BCI) OR (95% BCI) aOR (95% BCI)
Climatic/environmental factors
Rainfall 2.94 (1.48,5.75)* 1.46 (1.04,2.05)* 0.88 (0.44,1.77) 1.32 (0.68,2.55)
Day LST 1.04 (0.54,2.01) 1.18 (0.65,2.10)
Night LST 5.25 (2.43,11.19)* 1.35 (0.68,2.74) 1.50 (0.70,3.18)
NDVI, 0.13–0.47 1 1
0.48–0.60 2.55 (0.88,7.12) 0.84 (0.34,2.04)
0.61–0.78 0.99 (0.33,2.88) 1.91 (0.78,4.62)
Nightlights 0.26 (0.08,0.84)* 0.16 (0.06,0.43)* 0.69 (0.45,1.00)* 0.73 (0.47,1.12)
Altitude 0.35 (0.16,0.77)* 0.37 (0.15,0.86)* 0.35 (0.15,0.76)*
Altitude, 5–1189 m 1 1
  1190–1749 1.16 (0.54,2.55) 1.11 (0.57,2.2) 0.67 (0.34,1.34)
  1750–2990 0.29 (0.11,0.81)* 0.43 (0.15,1.27) 0.31 (0.10,0.95)*
Distance to permanent water 0.32 (0.12,0.80)* 0.75 (0.38,1.57) 0.57 (0.25,1.30)
Crop cover 1.46 (0.68,3.15) 1.71 (0.92,3.19)
Interventions
Proportion of households with at least one ITN 2.08 (1.10,3.86)* 1.93 (1.13,3.28)* 1.28 (0.87,1.88)
Proportion of households with at least one ITN for every two people 0.54 (0.36,0.79)* 0.89 (0.67,1.18)
Proportion of individuals with access to an ITN in their household 0.58 (0.33,0.99)* 0.73 (0.52,1.03)
Proportion of individuals that slept under an ITN the previous night 1.33 (0.71,2.38) 0.64 (0.45,0.91)* 0.59 (0.42,0.84)*
Proportion of children under 5 years old who slept under an ITN 0.76 (0.45,1.38) 1.07 (0.81,1.42)
Proportion of existing ITNs used the previous night 2.71 (1.53,4.81)* 0.70 (0.50,0.98)*
ACT use 1.67 (1.21,2.38)* 1.27 (0.96,1.71) 1.34 (1.14,1.57)* 1.29 (1.1,1.51)*
Mixing proportion 0.29 (0.02,0.94) 0.22 (0.01,0.84)
Spatial variance 6.41 (1.19,17.5) 5.48 (2.43,10.44)
Range (km) 4.42 (1.79,8.23) 131.68 (76.44,210.49)
DIC 488.67 665.19
*Statistically important
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Table 4  Estimated number of infected children and population-adjusted parasitaemia prevalence by age group and epidemiological 
zone
Malaria endemicity zone No. of infected 

children in 2015 
(thousands)

No. of infected 
children in 2020 
(thousands)

Relative reduc-
tion of infected 
children

Population 
adjusted preva-
lence in 2015

Population 
adjusted preva-
lence in 2020

Preva-
lence 
differ-
ence

n (95% CI) n (95% CI) % % (95% CI) % (95% CI) %
Children aged 6–59 months
  Highland epidemic 55.1 (32.3,99.3) 31.3 (12.9,58.6) 43.2 4.3 (2.5,7.7) 2.4 (1.0,4.5) 44.2
  Lake endemic 244.1 (185.0,312.3) 150.8 (117.0,199.2) 38.2 17.8 (13.5,22.7) 11.3 (8.8,14.9) 36.5
  Coast endemic 65.3 (42.7,101.4) 37.1 (19.6,74.2) 43.2 12.3 (8.0,19.0) 6.9 (3.7,13.9) 43.4
  Semi-arid seasonal 28.9 (14.3,89.0) 46.2 (16.8,220.3) -59.8 1.7 (0.8,5.1) 2.4 (0.9,11.4) -44.2
  Low-risk 19.4 (9.0,43.0) 9.7 (0.4,52.3) 50.1 1.0 (0.4,2.1) 0.5 (0.0,2.6) 49.7
  Overall 421.3 (342.3,517.9) 296.2 (197.2,488.1) 29.7 6.1 (4.9,7.5) 4.2 (2.8,6.9) 31.3
Children aged 5–14 years
  Highland epidemic 71.1 (49.8,111.6) 53.7 (30.6,94.5) 24.5 3.0 (2.1,4.7) 2.1 (1.2,3.7) 29.1
  Lake endemic 706.9 (602.4,851.8) 493.3 (420.6,587.7) 30.2 27.7 (23.6,33.4) 19.0 (16.2,22.6) 31.5
  Coast endemic 147.5 (93.4,230.5) 76.4 (36.3,128.9) 48.2 14.9 (9.4,23.3) 7.4 (3.5,12.4) 50.6
  Semi-arid seasonal 44.8 (20.4,108.9) 105.6 (44.5,268.2) -135.7 1.4 (0.6,3.4) 2.8 (1.2,7.2) -103.3
  Low-risk 22.8 (8.9,64.6) 43.9 (11.5,190.8) -92.6 0.6 (0.2,1.7) 1.1 (0.3,4.9) -85.8
  Overall 1007.0 (832.1,1182.6) 800.8 (629.8,1075.9) 20.5 7.8 (6.4,9.2) 5.8 (4.6,7.8) 25.7

Fig. 3  Probability of the decline in parasitaemia risk between 2015 and 2020 among children aged < 5 years (A) and 5–14 years (B)
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Land Surface Temperature (LST) was not associated 
with malaria risk in this study. Optimal temperature is 
necessary for the development of malaria vectors and 
transmission [25]. Given the diverse nature and range – 
from the vast hot semi-arid north, to the highlands – the 
effect of temperature may have been masked. Previous 
studies have associated temperature with malaria risk 
and shown that extremely cold and hot areas may not be 
suitable for malaria transmission [14, 17, 41]. Changes in 
temperature may be associated with increase in malaria 
risk observed in 2020 in some of the highland counties in 
Kenya, including Kericho, Nyamira and Bomet. Though 
generally malaria parasitaemia risk is lower in higher alti-
tudes as observed in the current and other studies [13, 
17, 43].

In Kenya, like in other countries in the SSA, ITNs 
remain the primary malaria prevention tool [27]. In this 
study, we found increase in the proportion of individu-
als using ITNS to offer a protective effect against malaria, 
especially in 2020. However, an increase in ACT use was 
associated with an increased risk of parasitaemia. This 
positive effect could be due to the higher concentration 
of ACTs in the endemic areas compared to other areas. 
Our findings are not unique to Kenya; Giardina et al. 
observed varied effects in Angola, Liberia, Mozambique, 
Rwanda, Senegal and Tanzania [13]. However, ITN and 
ACT use were found to significantly reduce malaria risk 
in Uganda [41]. These findings indicate that control inter-
ventions are useful in reducing parasitaemia risk in areas 
where they are deployed, and with the possible expansion 
of malaria risk, the NMCP should consider rolling out 

control efforts in the areas with increased parasitaemia 
risk.

Overall, this study observed a reduction in parasi-
taemia risk between 2015 and 2020. The reduction was 
greater among children aged < 5 years (31%) compared 
to those aged 5–14 years old (26%). This study attributes 
the overall decline to an increase of nightlights, which 
is a strong indicator of improved SES and urbanization, 
as well as increased ITN use. It is important to note that 
although, in general increased nightlights are associ-
ated with reduced malaria risk, this increase may not be 
homogenous. This was observed in the case of Nairobi, 
an urban setting in a low malaria transmission zone, 
where there was an increase in malaria risk between the 
two surveys. This highlights the need for context-specific 
analysis to better understand localized malaria transmis-
sion dynamics. Similar findings have been observed in 
other studies [21, 41], where urbanization and improved 
SES were associated with reduction in malaria risk, 
which could be beneficial in Kenya’s journey towards 
malaria elimination. However, caution is necessary with 
the detection of Anopheles stephensi in cities across the 
Horn of Africa [44, 45], as this invasive vector is known 
to transmit malaria in urban areas too.

Maps depicting the probabilities of reducing para-
sitaemia risk and county-level estimates of prevalence 
reduction could assist the Division of National Malaria 
Program (DNMP) and county-health departments in 
prioritising local control measures, targeting interven-
tions and optimising resource allocation. Of note is the 
significant increase in malaria risk in semi-arid seasonal 
epidemiological zones, especially in Turkana County, 

Table 5  Posterior estimates for the effect of interventions adjusted for difference in intervention coverage and climatic/ 
environmental factors between 2015 and 2020
Variable 6–59 months* 5–14 years

aOR (95% CI) aOR (95% CI)
Rainfall 0.93 (0.51,1.67) 1.45 (0.51,4.04)
Daytime land surface temperature 1.43 (0.58,3.47)
Night-time land surface temperature 1.01 (0.31,3.30)
Nightlights 2.25 (0.97,5.20) 1.42 (0.63,3.44)
Altitude 0.85 (0.29,2.50) 0.42 (0.17,0.99)*
Proportion of individuals that slept under an ITN the previous night 0.71 (0.42,1.18) 0.60 (0.41,0.86)*
ACT use 1.25 (1.07,1.47)*
Difference in rainfall 0.78 (0.34,1.80)
Difference in LSTD** 0.63 (0.39,1.02)
Difference in Nightlights 0.38 (0.17,0.79)* 0.66 (0.41,1.04)
Difference in proportion of individuals that slept under an ITN the previous night 1.66 (0.99,2.78) 1.01 (0.57,1.77)
Difference in ACT use 0.68 (0.42,1.09)
Mixing proportion 0.32 (0.01,0.99) 0.23 (0.00,0.96)
Spatial variance 1.23 (0.49,2.21) 5.16 (2.59,8.66)
Range (km) 48.64 (11.64,119.91) 121.31 (71.54,186.01)
DIC 357.74 656.90
*Statistically important

**Difference in LSTD selected among difference in climatic factors based on the model with the best DIC
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and the decline in Homa Bay County. The increase in 
malaria risk in Turkana County, located in north-western 
Kenya, may be attributed to changes in land use, which 
includes resource extraction and irrigation schemes that 
create breeding grounds for disease vectors [46] and cli-
mate suitability. Conversely, the decline in malaria risk in 
Homa Bay County is attributable to the IRS intervention 
that has been implemented in the county since 2017 [27]. 
The increase in malaria risk in Nairobi may be due to the 
importation of cases, especially from Western Kenya [47] 
and rapid urbanization that has led to settlement in riv-
erine areas. Additionally,  improved infrastructure over 
the past few years has increased movement between the 
regions. These findings highlight the need for intensified 
surveillance, deployment of diagnosis tools in expanded 
regions, and consideration of IRS use in high-burden 
areas.

With the increased pressure on health systems in SSA 
due to the double burden posed by infectious and lifestyle 
diseases, the gains in reduction of malaria may be reversed 
and the timelines for various milestones delayed. Additional 
malaria prevention and control methods may be helpful in 
accelerating the countries strategies towards elimination. 
Such interventions may include the incorporation of novel 
tools such as spatial repellents and next generation insecti-
cide products such as attractive targeted sugar baits (ATSB) 
in the vector control toolset, depending on where more con-
trol is required [48, 49]. Adoption of the “zero malaria starts 
with me” campaign, an educative campaign proposed by the 
African Union which seeks to have malaria prevention per-
sonalized by the populations could also be beneficial in the 
fight against malaria [7].

This study had a few limitations. Firstly, the MIS sur-
veys are powered for estimation of national and regional 
prevalence, so the raw data may not fully capture local-
ized contexts. However, the Bayesian geostatistical mod-
els use covariates to predict prevalence in unsampled 
locations, thereby estimating local variation. Secondly, 
the surveys were conducted during different seasons, 
with the 2015 survey conducted during the long rainy 
season and the 2020 survey during the short rainy sea-
son. This seasonal misalignment may bias our findings. 
However, since risk factors were averaged over a period 
of six months prior to the end of the survey, we believe 
that the estimates provided here are robust. Implement-
ing year-long rolling MIS would help address this chal-
lenge, but it remains infeasible due to high costs. Lastly, 
there were differences in interventions between the two 
surveys. In the case of the 2015 MIS clusters, they were 
combined with the 2014 DHS clusters to improve the 
precision of estimates of ITN coverage indicators. Unfor-
tunately, this was not possible for the 2020 MIS, though 
the survey included more locations compared to the 

2015 MIS. Nevertheless, these estimates were aggregated 
at the county-level, making them crudely comparable.

Conclussion
In this analysis we employed robust Bayesian geostatistical 
methods to assess malaria risk changes in Kenya between 
2015 and 2020. The rigorous model and variable selection 
methods, and the modelling approach can be used in other 
settings with low prevalence, or when modelling sparse sur-
vey data. Given that rainfall and nightlights are important 
drivers of malaria risk, it is essential to align control tools 
seasonally and maintain vigilance, especially with urbaniza-
tion. While the study observed reduction in malaria risk, 
some regions, particularly in the semi-arid and low-risk 
areas in the northern part of the country and sections of the 
highland areas, experienced significant increase in risk. The 
high spatial resolution maps depicting parasitaemia risk and 
probabilities of risk reduction provide valuable information 
for the DNMP and county government health departments. 
To capture spatio-temporal variations, we recommend sub-
national analyses of monthly incidence data. These analy-
ses would enable real-time monitoring of spatio-temporal 
changes in the distribution of malaria. This is particularly 
useful in advising the expansion or revision of parasite and 
vector control tools, and in targeting resource deployment.
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