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Abstract 

In an era of rapid technological advancements, generative artificial intelligence and foundation models are reshaping 
industries and offering new advanced solutions in a wide range of scientific areas, particularly in public and envi-
ronmental health. However, foundation models have previously mostly focused on understanding and generating 
text, while geospatial features, interrelations, flows and correlations have been neglected. Thus, this paper outlines 
the importance of research into Geospatial Foundation Models, which have the potential to revolutionise digital 
health surveillance and public health. We examine the latest advances, opportunities, challenges, and ethical con-
siderations of geospatial foundation models for research and applications in digital health. We focus on the specific 
challenges of integrating geospatial context with foundation models and lay out the future potential for multimodal 
geospatial foundation models for a variety of research avenues in digital health surveillance and health assessment.
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Introduction
This vision paper outlines the opportunities and chal-
lenges in the integration of geospatial factors into health 
research, highlighting the potential of advanced AI meth-
odologies and multimodal data analysis. The paper fur-
ther explores the profound implications of geospatial 
foundation models (FM), examining its key applications, 

challenges, and the path forward toward AI-powered 
geospatial insights in health and disease research. In this 
paper, we lay the groundwork for the development and 
implementation of FMs in health geography. We start out 
by providing an overview of existing FMs like Language 
Foundation Models, Geospatial and Vision FMs, and 
Multimodal FMs. Thereafter, we identify concrete chal-
lenges in current research involving FMs in geospatial 
health. Finally, we present opportunities for the effective 
use of FMs in health geography and provide an agenda 
for future research.

Overall, our contributions can be summarised as 
follows:

• We systematically examine the potential and effec-
tiveness of large AI foundation models in health 
geography, providing the first assessment of the State 
of the Art (SotA) in this domain.
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• We thoroughly discuss the challenges and risks of 
developing and integrating FMs in a health-related 
context.

• We present an overview of the concrete opportuni-
ties of FMs in geospatial health including clear future 
research avenues.

This paper is the second in an Int J Health Geogr two-
article series (2025) on the ‘Generative Revolution’. The 
first article in the series entitled ‘The Generative Revo-
lution: A Brief Introduction’ provides an additional brief 
introduction and context to the current article.

Geospatial digital health surveillance
Digital health surveillance and disease research have 
recently gained more and more interest, particularly 
through the rise of smartphones, artificial intelligence 
methods, and the widespread availability of digital data 
from various sources. Numerous research efforts have 
investigated the use of smartphone usage patterns, 
smartphone-based disease diagnostics, smart wearable 
sensors, and large-scale data sources such as Internet 
searches and social media posts, among others. These 
efforts aimed to complement and enhance traditional 
methods in health research and practice, thus generating 
meaningful insights, enabling timely interventions in vul-
nerable regions [1].

However, the integration of geospatial factors in health 
research has historically been underexplored and under-
utilised. Geospatial health research primarily focuses on 
the spatial dimensions of health issues and outcomes, 
examining how location as well as the social, natural or 
built environment influence disease patterns, and health-
care accessibility. Similarly, environmental health appli-
cations investigate how external and human induced 
factors like climate change, pollution and urbanisation 
impact the environment and well-being. This considera-
tion of a multitude of context factors is key in the context 
of the World Health Organization’s (WHO) One Health 
initiative that “addresses the interconnected risks and 
vulnerabilities of human, animal and ecosystem health” 
[2].

Commonly employed methodologies, such as time 
series analysis and the use of discrete geospatial units 
like administrative boundaries, have often disregarded 
the complexities of spatial interactions and relationships. 
This research gap is attributable to a range of challenges 
that previously hindered progress in the field:

Data Limitations: Historically, the required geospatial 
data were either unavailable or accessible only in limited 
forms, thus limiting the significance and scalability of 
approaches for digital health research [3].

Modelling Complexity: The development and applica-
tion of spatial interaction models are typically complex 
and resource-intensive. While one-dimensional models, 
e.g., for time series analysis and prediction, have been 
widely researched and adopted, health research still 
struggles with scalable and generalist spatial models, 
partly due to complex spatiotemporal covariance matri-
ces [4]. Geographic data often exhibit spatial depend-
ence or autocorrelation, which violates the assumption 
of independence common in many traditional statistical 
models, requiring specialised techniques in spatial statis-
tics or explicit geospatial machine learning approaches. 
Models must account for this dependence to avoid biases 
and ensure accurate results.

Disease-Specific Focus: Existing models often lacked 
generalisability, being narrowly tailored to specific dis-
eases without accommodating broader applications. This 
limits both their reliability and robustness as well as their 
potential for practical applicability [5].

Image-Centric Approaches: Research on geospatial 
health analysis models oftentimes focused on image data, 
thereby excluding other valuable geospatial modalities.

Paradigm changes in geospatial health surveillance
Despite these shortcomings, recent advancements in 
technology, widespread data availability and new analy-
sis methods have transformed the landscape of geo-
spatial health research, creating new opportunities to 
address these historical limitations. Methodologically, 
this also drove the emergence of geospatial multimodal 
approaches that integrate various data types for compre-
hensive insights. Particularly AI algorithms have matured 
to address many of the issues inherent in traditional 
purely hypothesis-driven modelling approaches. Founda-
tion models, in particular, provide a powerful framework 
for leveraging largescale geospatial datasets and over-
coming prior computational and modelling barriers.

These developments have led to a shift in geospatial 
health research, for instance, in the following areas:

• Disease Prediction and Surveillance: AI models have 
significantly improved the accuracy of predicting dis-
ease outbreaks, such as dengue fever and COVID-19, 
by analysing environmental and social determinants 
[6].

• Environmental Health Assessment: AI can effectively 
monitor air and water quality, linking these factors to 
health outcomes. To better understand environmen-
tal public health risks, a multi-layer geospatial analy-
sis was conducted by combining environmental data 
(air and water quality), demographic information 
(population density, age distribution), and epidemio-
logical records (disease incidence) [7]—Fig.  1. Simi-
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larly, the Malaria Atlas Project [8] aims at converging 
geospatial data with AI to provide targeted insights 
into malaria prevalence and control strategies, and 
the Map of Life initiative [9] aims to help identify and 
close key information gaps and highlight species of 
greatest concern.

• Public Health Risk Prediction: GenAI methods, uti-
lizing machine learning and natural language pro-
cessing, enhance risk prediction by integrating 
diverse data sources, detecting non-linear relation-
ships, and identifying latent patterns [10].

• Pandemic Modelling: A notable initiative was the 
correlation of pollution parameters with mortality 
[11]. By integrating Large Language Models (LLMs), 
these models provided localised risk assessments 
and tailored public health guidance, such as targeted 
lockdowns and vaccination drives, demonstrating the 
potential for proactive pandemic response [12].

• Resource Allocation: AI-driven models help in opti-
mising the distribution of healthcare resources, 
ensuring better preparedness and response to health 
crises. For example, researchers utilised mobility data 
from smartphones and environmental factors such 
as temperature and humidity to predict the spread of 
the virus [13] to support policy-making and health 
resource allocation.

• Identifying Health Disparities: AI is capable of iden-
tifying and addressing health disparities by analysing 
geospatial data to uncover patterns related to socio-
economic factors. Geospatial AI models help identify 
healthcare areas lacking adequate medical facilities 

by analysing population density, transportation net-
works, and socioeconomic data [14, 15]. Foundation 
models, particularly LLMs, augment these efforts 
by interpreting demographic surveys and historical 
health outcomes [16] to suggest equitable resource 
allocation strategies, such as establishing mobile clin-
ics or optimising ambulance routes.

Foundation models in health research
The field of AI has recently undergone a substantial para-
digm shift towards FMs, i.e., large AI models pre-trained 
on vast Internet-scale datasets [17]. Rather than training 
task-specific individual models from scratch, FMs are 
fine-tuned using few-shot or zero-shot learning strategies 
on top of pre-training. Fine-tuned FMs have presented 
remarkable performance across a diverse range of tasks 
including text classification [18], question answering [19], 
image classification [20] or segmentation [21].

These rapid advancements have naturally transferred 
to the domain Geospatial Artificial Intelligence (GeoAI), 
though the development of a geospatial FM remains chal-
lenging due to the multimodal nature of most geospatial 
data, which encompasses geospatial information such as 
geometries along with text, images, graph or vector data 
[22]. From an application perspective, geospatial FMs 
hold significant potential for health geography. Mai et al. 
[22] demonstrated the capabilities of the pre-trained 
Generative Pre-trained Transformer (GPT) language 
model [23] and its variant InstructGPT [24] to predict 

Fig. 1 a Regional temperature anomaly (°C) averaged over the summer of 2022. b Regional heat-related mortality rate (summer deaths per million) 
aggregated over the summer of 2022 for the whole population (image adapted under a Creative Commons Attribution 4.0 International License 
from [7])
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dementia-related death counts on a state- and county-
level in the United States of America (USA), even outper-
forming a traditional AutoRegressive Integrated Moving 
Average (ARIMA) model.

Regardless, FMs are still underused in the domain of 
geospatial health. Their adoption is particularly com-
plicated due to the multimodal complexity of diseases 
[25]. The spread of viral infections, for instance, is highly 
heterogeneous in space and the process of contagion is 
location-dependent as the virus moves through different 
regions [26]. Health is additionally influenced by various 
socio-ecological covariates, making disease dynamics a 
highly complex system [27].

Next‑generation natural language conversational 
interfaces and agentic systems (AI Agents) for querying 
geospatial catalogues: the geoexposomics demonstrator 
example
In a recent ISPRS (International Society for Photogram-
metry and Remote Sensing) funded project under ISPRS 
Scientific Initiatives 2023, researchers from five countries 
proof concepted and disseminated their initial develop-
ment concepts about a much-needed metadata catalogue 

of Earth observation data sources/products and types 
that are relevant to human health research in exposom-
ics [28]. The proof-of-concept (PoC) searchable catalogue 
takes the form of a dedicated Geoexposomics Web por-
tal that is provided as a free service to interested par-
ties worldwide at [29]. A key part of this effort involved 
examining a number of complementary user inter-
face and experience options to make the PoC catalogue 
searchable and more accessible to its end users, and to 
improve the discoverability of its content. Notable among 
these experimental user experiences is GeoX-GPT, a 
ChatGPT-like natural language conversational interface 
for querying the metadata catalogue powered by an LLM 
and Retrieval-Augmented Generation (RAG), whereby 
the PoC catalogue became an external knowledgebase 
to GPT, in order to provide more relevant and better 
cross-linked search results in response to user’s prompts. 
Geo-X GPT has the potential of better handling user 
questions and interactions with the catalogue by allow-
ing users to query the catalogue in an unrestricted, natu-
ral way using their own words and terms and to receive 
more expert-human-like relevant answers from the sys-
tem (Fig. 2) [28, 29].

Fig. 2 Screenshot of GeoX-GPT. This experimental RAG implementation was developed in GPT-trainer. It features a natural-language-based, 
AI-driven conversational user interface to enhance discovery and explorability by allowing the search user interface to more flexibly adapt to users’ 
needs in more natural ways instead of asking users to adapt to and master a rather rigid (preprogrammed) and less forgiving conventional interface
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However, using remote sensing datasets in own 
research can often prove challenging to novice research-
ers. For example, researchers should be aware of, and 
address, the fact that various remote sensing datasets can 
have highly variable accuracy. Users who are less expe-
rienced in exposure measurement would definitely ben-
efit from this kind of practical tips. One possible future 
direction for Geo-X GPT would be to expand it into a 
fully-fledged agentic system (AI agent) that contextu-
ally incorporates and automates this tip and others (the 
’know-how’ of expert users) to assist less experienced 
users (as well as experienced researchers) in selecting, 
preparing, and running the most appropriate datasets, 
approaches and methods for a given investigation or 
research question. AI agents and conventional workflows 
are not the same; agentic systems can offer a better solu-
tion when operating in a wide-ranging, dynamic research 
and investigation environment covering different health 
conditions and datasets with many variations, variables, 
interdependencies, uncertainties, data formats, quality 
and completeness issues, and other data selection and 
analysis factors to consider. For more information about 
agentic systems, please refer to [30–32].

Foundation models in geospatial health: state 
of the art
The history of geospatial foundation models reflects the 
convergence of advances in geospatial sciences, machine 
learning, and big data analytics. Early GIS platforms like 
ESRI’s ArcGIS, GRASS GIS, and others laid the ground-
work for geospatial data processing, focused on static 
mapping and spatial data visualisation. The integration of 
FMs in geospatial health has seen various degrees of inte-
gration. Language FMs, though frequently used in the 
medical and public health domain, have seen little con-
sideration for geographic space. Conversely, vision FMs 
and their geospatial variants are used more widely in the 
field of remote sensing. However, a research geospatial 
FM that are capable of handling geo-data beyond images 
is still underrepresented, although they can increase the 
effectiveness and precision of geographical modelling, 
improving public health outcomes [33, 34].

Language foundation models
Large pre-trained language FMs, usually referred to as 
LLMs in the literature, are a subset of AI models designed 
to process and generate human-like text. They have fun-
damentally changed the field of Natural Language Per-
formance (NLP) in less than a decade. Models such as 
Bidirectional Encoder Representations from Transform-
ers (BERT) [35], OpenAI’s GPT [36] and Meta’s Llama 
[37] are trained on immense amounts of textual data 
scraped from the web [38] using self-supervised learning 

tasks, thus involving no human labelling. Fine-tuned 
variants of these LLMs have demonstrated exceptional 
performance for numerous language understanding tasks 
such as content summarisation [39], translation [40], 
zero-shot classification [41], question answering [19] or 
even logical reasoning [42].

The internal structure of these language FMs usu-
ally relies on the transformer architecture [43] and fre-
quently involves billions of parameters, making them 
cost-intensive to run. However, they are significantly 
more sample-efficient compared to smaller, non-pre-
trained models, making fine-tuning with little data sub-
stantially more effective [44]. Chatbot-like interfaces to 
generative language FMs such as ChatGPT also allow 
for instruction-based fine-tuning using natural language 
[24] and prompting techniques [45]. More recent mod-
els with reasoning capabilities, e.g., by OpenAI (o1) and 
DeepSeek (R1), have further improved the performance 
of LLMs. Users can now run some of these LLMs on their 
own (suitable) laptops and PCs entirely offline to keep all 
their interactions with the LLM private and secure, e.g., 
DeepSeek R1 runs smoothly on NVIDIA GeForce RTX 
50 Series AI PCs [46], but also on some earlier RTX 30 
and 40 Series machines.

In this context, Clinical Language Models (CLaMs), 
language models fine-tuned for and with electronic med-
ical data, have gained significant popularity [47]. CLaMs 
have been successfully used to extract drug names or 
medical information from text [48], medical question 
answering [49] or medical dialogue summarisation [50]. 
While general-purpose FMs such as GPT are becoming 
increasingly powerful CLaMs still tend to vastly outper-
form these models for medical tasks [51, 52]. Beyond the 
pure medical scope, language FMs have also been uti-
lised to process large amounts of textual information like 
social media posts or news articles in the context of epi-
demic outbreaks, particularly during the COronaVIrus 
Disease 2019 (COVID-19) crisis in 2020 [53].

However, the capabilities of language FMs in a health 
context has not been extended by geospatial capabili-
ties. Previous research in Geoinformatics tends to focus 
on the generalised applications of language FMs in Geo-
graphic Information System (GIS), from information and 
location extraction [54] to fully autonomous GIS and 
mapping workflows [21, 55]. Consequently, neither do 
CLaMs explicitly consider geographic context, nor have 
language FMs been specifically utilised for investigations 
in geospatial health like context-based diagnosis or dis-
ease count prediction.

Geospatial and vision foundation models
The concept of FMs was originally pioneered by vision 
models like VGGNet [56], ResNet [57] and AlexNet [58], 
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and was later advanced by the Vision Transformer (ViT) 
architecture [59], which adapted transformer-based 
approaches from natural language processing to image 
processing. Foundation models in geospatial contexts 
are agnostically trained on diverse and massive unlabeled 
geospatial datasets and can generalise across tasks [60, 
61]. In this way, these models can be fine-tuned on rela-
tively smaller, task-specific annotated datasets for spe-
cific tasks, such as predicting disease outbreaks, assessing 
environmental risks, and optimizing resource allocation, 
leading to more efficient and effective solutions.

Standard vision FMs are frequently employed in medi-
cal imaging for tasks like image segmentation [62] and 
classification [63], though more complex tasks like ques-
tion answering are usually powered by multimodal FMs 
instead of being purely vision-based [64]. However, vision 
FMs have been widely adopted in the geospatial domain, 
resulting in the first generation of geospatial FMs which 
are pre-trained on large amounts of geospatial image data 
from satellites. Additional challenges introduced by using 
satellite imagery include the spectral differences between 
satellites and variations in spatial resolutions, e.g. 10  m 
for Sentinel-2 and 30 m for Landsat-9 [65]. NASA/IBM’s 
Prithvi model, for instance addresses the problems of 
spectral differences through harmonisation and was 
pre-trained on more than 1 TB of multispectral satellite 
imagery from Sentinel-2 [66]. Pre-trained Prithvi outper-
formed the SotA on various earth observation tasks like 
for flood mapping on 10  m resolution or wildfire scar 
segmentation. Other notable geospatial FMs include Sat-
MAE [60], Scale-MAE [67] and DINO-MC [68]. These 
geospatial FMs can effectively be used for public health 
tasks like water quality detection [69], pollution monitor-
ing [70] or mosquito breeding site detection [71].

However, this first generation of geospatial FMs can 
be described more accurately as geospatial vision as they 
rely exclusively on image data. This not only limits their 
applicability to other spatial data such as geo-referenced 
text, numbers or trajectories but also defies the original 
goal of developing generalisable geospatial FM. As Mai 
et al. [22] state, a true geospatial FM must be capable of 
handling different data sources and types beyond satel-
lite images [22]. The broad applicability of geospatial FMs 
in a health context is therefore currently limited by the 
nature of these models. Epidemiological modelling or 
contextualised medical diagnosis is not possible using 
current geospatial FMs.

Multimodal foundation models
Based on the progress made in language modelling, 
FM development has recently shifted towards so-called 
LMMs. These are large-scale FMs that integrate multi-
ple modalities like language, vision and audio. One of 

the first breakthroughs of this kind was achieved by the 
Vision-Language Model (VLM) Contrastive Language-
Image Pre-training (CLIP) [23], which uses self-super-
vised contrastive learning to learn joint embeddings for 
images and text. Numerous follow-up works like Boot-
strapping Language-Image Pretraining (BLIP) [72, 73], 
BEiT [74] and Large Language and Vision Assistant 
(LLaVa) [75] have been presented, improving upon the 
original CLIP approach. The commonly used GPT-vari-
ant is also an inherently multimodal FM, supporting both 
vision and language by default [36]. GPT now addition-
ally supports audio and video, and so does Google’s fam-
ily of Gemini models [76]. Both models allow for almost 
natural human interaction using spoken language with 
capabilities to generate and read visual content alongside. 
The simultaneous handling of audio, vision and language 
has also been discussed in data2vec [77] which presents a 
way to learn a joint latent embedding space for all three 
modalities.

Multimodal FMs are increasingly used in the medi-
cal domain with the main application areas being visual 
question answering powered by a fine-tuned model like 
Gemini [78]. With image-understanding capabilities, 
multimodal FMs are also well-suited generating medi-
cal reports from both text and image data [79]. Liu et al. 
[80] further suggest the use of multimodal FMs as per-
sonal virtual assistants in medicine, enabling remote 
healthcare, multilingual medical communication and the 
efficient integration of academic literature, clinical guide-
lines and case studies [80].

However, geographic space has not yet been consid-
ered in the development of multimodal medical FMs. 
Conversely, health geography has also not received much 
attention as an application area for multimodal FMs in 
Geoinformatics. So far, multimodal FMs are primarily 
viewed as reasoners with extended capabilities compared 
to language FMs in the geospatial sciences. For instance, 
Wang et  al. [81] proposed the use of vision-language 
models to generate captions for street view imagery or 
explainable flood depth estimation where the model 
outputs a reason for the estimated flood depth such as 
‘The flood inundates the adult male’s knee, so I guess the 
depth is about 0.5  m’ [81]. We therefore identify a sub-
stantial research gap concerned with bringing together 
the geospatial and medical capabilities of FMs.

Current research challenges with foundation 
models in geospatial health
While FMs have demonstrated remarkable performance 
for both medical and geospatial tasks, their usage in 
health geography is limited by significant challenges in 
data curation, generalisability, prediction quality and 
credibility.
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Geospatial multimodality
The increasing availability of geospatial health data in 
recent years has facilitated advancements in applications 
like COVID-19 monitoring [82] or Dengue disease con-
trol [83]. Despite these advances, a model for handling 
multiple types of geospatial health data remains unde-
veloped. FMs pre-trained on large amounts of such data 
could overcome the limitations of disease-specific mod-
els. Such an effort, however, would require an FM that is 
capable of (1) handling multiple modalities such as num-
bers, text, images or trajectories simultaneously while (2) 
being able to consider geographic space during training 
and prediction. As current geospatial FMs only integrate 
image data, the development of a multimodal geospatial 
FM is essential for leveraging their capabilities in health 
geography.

Spatially explicit learning
In many ways, geospatial data defies the assumption 
made in traditional Machine Learning (ML) settings such 
as the hypothesis that the data points are independent 
and identically distributed (i.i.d.). It furthermore pre-
sents challenges like spatial dependence, spatial hetero-
geneity and the Modifiable Areal Unit Problem (MAUP). 
Therefore, spatially explicit learning techniques have 
gained significant traction and have been shown to out-
perform traditional non-spatial methods [84–88]. In 
recent years, ML methods have been widely adopted in 
health geography with applications in public health sur-
veillance [89, 90], environmental analysis [91], infection 
risk factor identification [92] or vector control [83]. How-
ever, the utilised techniques are rarely spatially explicit, 
highlighting the potential for improvement through the 
explicit consideration of geographic space. Consequently, 
geospatial FMs for health geography should not only be 
viewed from a data perspective but also integrate geo-
graphic space from an architectural viewpoint.

Data availability, generation and curation
In order to achieve generalist capabilities, FMs must be 
trained on massive, diverse and high-quality health-
related geospatial datasets [93]. The creation of such 
datasets requires access to credible data on disease 
spread, patient data, pollution measurements and other 
variables from around the globe. It must be diverse 
enough to cover all regions and populations of the world 
while following a common understanding of diseases 
and infections. The construction of a large-scale dataset 
therefore encompasses ethical, economic and social chal-
lenges. Currently, access to health data within research 
groups is often limited to small sample sizes from small 
geographic areas [94]. Data curation therefore poses a 

major research challenge for leveraging FMs effectively in 
a health context.

In part, insufficient training data can be augmented 
using data generation techniques to improve model per-
formance [95]. For instance, [96] have demonstrated that 
the classification of tweets regarding COVID-19 inter-
vention measures can be improved using distillation 
[97]. Additionally, Kim et al. [98] presented an approach 
for generating like geo-social urban movement trajecto-
ries [98]. Extending these methods to geospatial health 
data while incorporating multiple modalities can miti-
gate some of the lack in training data. However, gener-
ating credible spatio-temporal synthetic datasets is far 
from trivial, requires careful assessment for bias and has 
not been tackled yet. In this context, FMs (1) are able to 
generate higher quality synthetic data compared to previ-
ous methods [99] and (2) can benefit from this additional 
data during pre-training or fine-tuning. However, multi-
modal data generation and trustworthiness are still a key 
research challenge.

Credibility and explainability
An increase in the reliance on FMs in health geography 
requires the models to be highly credible. That is, users 
must be confident in the model’s output. This encom-
passes both accuracy and consistency. A model must be 
able to withstand bias and noise in the input data while 
producing consistent results across nuanced datasets 
[100]. While the credibility of modern FMs has improved 
over traditional deep learning methods [101], health data 
and its associations with the environment are frequently 
fuzzy [89]. Credibility therefore remains a significant 
challenge. While eXplainable Artificial Intelligence (XAI) 
can help make models more credible by providing a rea-
son for the output, interpretability alone does not nec-
essarily encompass credibility if the model’s output is 
wrong [102]. Simultaneously, large-scale models with bil-
lions of parameters are increasingly challenging to under-
stand, even if the architecture is completely transparent 
[101].

Geographic bias
FMs tend to amplify existing biases in the training data 
[103, 104]. In the context of health geography, this par-
ticularly concerns geographic bias which has gained 
increasing interest in GeoAI research. Manvi et al. [105] 
found that LLMs like GPT and Llama are clearly biased 
against locations with lower socioeconomic conditions, 
especially most of Africa, on a range of subjective top-
ics such as attractiveness, morality and intelligence [105]. 
Liu et al. [106] further showed that neural-network-based 
geo-parsing models were highly biased in quality towards 
data-rich regions in Europe and the USA [106]. Liu et al. 



Page 8 of 15Resch et al. International Journal of Health Geographics            (2025) 24:6 

[20] also found significant inter-regional disparities in 
the geo-guessing performance of several GPT variants 
for UNESCO World Heritage Sites [20]. Large-scale FMs 
also frequently carry inherent prejudices against certain 
groups of people such as the black population in the USA 
and tend to work best for high-resource languages such 
as English [107]. As debiasing massive FMs in retrospect 
is very difficult [22], unbiased training data is of utmost 
importance. Biases are particularly dangerous in a health 
context as they can easily be learned during fine-tuning 
[103], risking significant harm if the model is widely 
adopted.

This bias is oftentimes caused by hidden spurious cor-
relations and can result in inaccurate and inequitable 
outcomes, such as neglecting marginalised communi-
ties. A notable example is the disparity in air quality 
monitoring data, where urban areas often have more sen-
sors compared to rural or remote/isolated regions. This 
disparity can skew AI predictions and decision support 
interventions. Developers must ensure that AI/LLMs 
and geospatial models are inclusive and representative by 
integrating adequate and diverse datasets and performing 
regular audits. Identifying the reasons behind a biased 
system is not straightforward, since in many occasions 
they are associated with hidden spurious correlations 
which are not easy to spot, and specific tools like DOM-
INO, FACTS, ViG-Bias and Bias-to-Text are being used 
for its mitigation [108].

Privacy and security
Geospatial FMs also pose significant privacy risks due 
to potentially sensitive information that can be learned 
and disclosed by the model. For instance, a LLM could 
memorise home addresses present in the training data 
and disclose them when asked. In a health context, a mul-
timodal FM could even learn the health status of people 
depicted in images. Someone could then upload a picture 
of a person and ask for the health of individual persons, 
potentially disclosing information that could threaten 
people’s lives [109]. In case the model has access to addi-
tional geospatial databases, sensitive information could 
also be leaked from those. Malicious user interaction and 
adversarial attacks pose supplementary challenge in this 
context. Such attacks can cause the model to produce 
wrong results through well-designed noises that are fre-
quently invisible to humans [101]. For instance, Perez 
and Ribeiro [110] state that GPT could easily be guided 
towards ignoring all previous prompts including system 
prompts by injecting specific attack prompts [110]. Simi-
larly, Schlarmann and Hein [111] found that multimodal 
vision-language models can be attacked to lead users to 
malicious websites or provide fake information using 

imperceivable alterations on images [111]. Such security 
issues would be intolerable in health applications where 
interventions critically impact patient outcomes and 
well-being.

Furthermore, during the development of contact trac-
ing apps during the COVID-19 pandemic, questions 
arose about how much personal location data should be 
shared to balance public safety with individual privacy. 
Striking a balance between utility and confidentiality 
is critical, requiring robust encryption, anonymisation, 
and ethical oversight. Haltaufderheide and Ranisch con-
ducted a systematic review on the ethics of ChatGPT 
and other LLMs in medicine, identifying four broad LLM 
application categories (covering health professionals and 
researchers, patient support, clinical applications, and 
public health) and a number of recurring ethical issues 
related to epistemic values (reliability, transparency, 
hallucinations), therapeutic relationships, and privacy, 
among others [112].

Finally, the integration of geospatial data with health 
information raises privacy concerns. For example, dur-
ing the COVID-19 pandemic, location data from con-
tact tracing apps raised debates on privacy versus public 
health benefits. Striking a balance between utility and 
confidentiality is critical, requiring robust encryption, 
anonymisation, and ethical oversight to protect sensitive 
data while enabling actionable insights.

Ethical and functional considerations
One of the major drawbacks of FMs, particularly LLMs, 
are so called “hallucinations”, which stem from the inher-
ent stochasticity of these models, whereby the models 
generate plausible sounding but factually incorrect or 
nonsensical information. This is a major issue for the 
utilisation of LLMs especially in healthcare and public 
health, but also to many other industries that cannot tol-
erate a 10% or even 5% error rate/misinformation rate. 
In medical applications for instance, if left undetected, 
these hallucinations can pose significant clinical risks 
to patients, and lead to misdiagnoses and inappropriate 
treatments.

Several tools are used to mitigate the hallucinations 
problem. For example, Hypercube is a tool for the auto-
mated detection and mitigation of LLM hallucinations, 
which integrates medical knowledge bases, symbolic 
reasoning, and NLP, allowing for an initial automated 
detection step before human expert review [113]. RAG 
technology can reduce a model’s hallucinations by 
grounding the generated content in retrieved, verified 
data, but it is not a complete solution to the hallucination 
problem. There is ongoing research on this topic [114] 
which is of critical importance when it comes to health 
applications.



Page 9 of 15Resch et al. International Journal of Health Geographics            (2025) 24:6  

Other notable limitations in relation to LLM stochas-
ticity include ‘prompt brittleness’ (slight modifications 
in prompts leading to significantly different outputs) 
and LLM unpredictability or reproducibility issues (their 
ability to generate different responses when prompted 
repeatedly with exactly the same prompt) [115]. These 
issues can affect the reliability and consistency of LLM-
generated answers over multiple runs of the same or 
slightly paraphrased user queries.

Another recent finding concerns the inability of espe-
cially VLMs to understand negation. In multimodal 
tasks, VLMs like CLIP play a crucial role in areas such as 
image retrieval, image captioning, and medical diagno-
sis. The goal of these models is to align visual data with 
language data for more efficient information processing. 
However, current VLMs still face significant challenges 
in understanding negation, which is an issue particularly 
with tasks and questions that are defined by comprehen-
sive inclusion and exclusion criteria. To address these 
issues, researchers from MIT, Google DeepMind, and the 
University of Oxford proposed the NegBench framework 
to evaluate and improve VLMs’ understanding of nega-
tion [116].

Developing and deploying AI-powered geospatial solu-
tions can be technically challenging, requiring high-per-
formance computing. Ironically, training large models for 
environmental applications has its own environmental 
cost by requiring significant computational resources, 
thus significantly contributing to carbon emissions. 
Researchers must prioritise energy-efficient algorithms 
and reduce computational demands as much as possible.

Future research avenues for foundation models 
in geospatial health
Geospatial context: data/information and methods
The integration of geospatial information into health 
surveillance and prediction constitutes a critical frontier 
in medical informatics and public health. This approach 
leverages the spatio-temporal nature of health spread 
through analysing digital geodata to improve the accu-
racy and timeliness of real-time health surveillance.

A key component of this integration is the development 
and application of spatio-temporal plausibility measures. 
These measures evaluate the likelihood of disease occur-
rence based on the co-occurrence of temporal and spa-
tial factors. For example, understanding the incubation 
periods and transmission dynamics of specific diseases 
allows for more precise predictions when combined with 
regional case trends. Further research should explore 
algorithms capable of dynamically weighting these fac-
tors based on disease-specific parameters, local epidemi-
ological data, and environmental influences.

From a diagnostic viewpoint, chatbot-based systems 
such as Symptoma [117] could utilise geospatial data to 
enhance diagnostic likelihood calculations. For instance, 
if epidemiological records indicate that an unusually high 
number of measles cases have been recently reported in 
a specific region such as a city or a metropolitan area, 
symptoms reported in the same region could significantly 
increase the likelihood of a subsequent diagnosis of mea-
sles. This highlights the need for real-time incorporation 
of regional case counts into diagnostic decision-making 
processes.

The use of a wide variety of large-scale user-generated 
data represents another promising avenue. Sources such 
as Internet search trends, geo-social media activity, and 
data from smart thermometers can act as early indica-
tors of disease outbreaks. Particularly geo-social media 
have been shown to significantly enhance the prediction 
of disease spreads [82, 90]. Furthermore, the rapid rise of 
large-scale wearable sensing technologies due to the rise 
of the "quantified self" movement has established a large-
scale health monitoring system through the availability 
of affordable physiological sensors measuring heart rate, 
heart rate variability, electrodermal activity or skin and 
body temperature.

These data streams, while inherently noisy, could be 
refined through advanced natural language process-
ing (NLP) and machine learning techniques to extract 
meaningful signals. For instance, increases in searches 
for "rash and fever" within a geographic region could 
correlate with the emergence of increasing disease case 
counts, providing an early warning system for public 
health authorities.

Moreover, patients’ self-recorded images, as dem-
onstrated in recent studies [118], also hold significant 
potential for diagnosis. Smartphone-captured images, 
analysed through deep learning-based image recog-
nition algorithms, could identify dermatological or 
visual symptoms indicative of specific diseases. Future 
research should focus on enhancing these algorithms 
to accommodate diverse populations and varying 
image qualities, ensuring diagnostic reliability.

Incorporating clinical data from physicians’ visits 
adds another layer of depth. This includes not only the 
documentation of symptoms and diagnoses but also 
metadata such as timestamps and geographic loca-
tions, enabling synchronisation with broader epidemi-
ological trends. Linking these data points with travel 
activity can further refine diagnostic accuracy. Collec-
tive mobility patterns, such as increases in commuting 
or travel during holidays, can inform population-level 
disease risk models. Meanwhile, individual travel 
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history provides critical exposure data, especially for 
diseases with known hotspots or outbreak regions.

To fully realise the potential of these approaches, 
robust methodologies for data integration and analysis 
are essential. Advances in data interoperability stand-
ards, privacy-preserving data sharing frameworks, 
and federated learning techniques could enable the 
secure and ethical utilisation of sensitive geospatial 
and health data. Moreover, interdisciplinary collabo-
ration between epidemiologists, data scientists, clini-
cians, and public health officials is crucial to develop 
systems that are both scientifically rigorous and practi-
cally implementable.

Future research should also address the challenges 
associated with real-time data processing and visuali-
sation. Developing interactive dashboards capable of 
presenting layered geospatial and temporal data could 
enhance decision-making for healthcare professionals 
and policymakers. These tools should be designed to 
accommodate the dynamic spatio-temporal nature of 
disease spread, incorporating predictive modelling to 
forecast potential outbreaks and resource needs.

In summary, integrating geospatial information into 
health surveillance and diagnosis demands compre-
hensive research across multiple domains. By combin-
ing real-time regional data, spatio-temporal analytics, 
user-generated content, clinical records, and mobil-
ity patterns, future systems can offer unprecedented 
precision in health analysis and monitoring as well as 
disease prediction. These efforts promise to transform 
public health responses, improving both individual 
patient outcomes and broader epidemic management 
strategies.

Geospatially enhanced foundation models
Geospatially explicit FM and question answering
Geospatially explicit FM offer significant advantages 
over non-spatial models by considering spatial struc-
tures, interactions, and correlations into their ana-
lytical approach. Unlike traditional models, which 
often treat spatial data as independent observations, 
geospatially explicit FM consider geographic depend-
encies, spatial autocorrelation, and the influence of 
topological relationships. They capture flows within 
and between regions, supporting a deeper understand-
ing of spatial phenomena, such as migration patterns, 
transportation networks, and environmental dynam-
ics. By embedding spatial structures into their learn-
ing process, these models enable more accurate and 
context-aware predictions, making them particularly 
valuable for geospatial health surveillance and risk 
assessment. Their ability to model spatial relationships 
enhances not only predictive performance but also the 
interpretability of spatial patterns, facilitating more 
informed decision-making in domains where geogra-
phy plays a crucial role.

Beyond their predictive capabilities, geospatially 
explicit FM enable advanced geospatial question 
answering through dialogue-based interaction. These 
models allow users to pose complex spatial queries 
and receive insightful responses that incorporate fea-
ture selection, model architecture design, and coding 
explanations. Unlike conventional geographic infor-
mation systems (GIS), which purely rely on domain 
expertise to extract meaningful insights, geospa-
tially explicit FM enhance accessibility by enabling 
natural language queries. This capability extends to 

Table 1 Key recommendations for successful generative AI adoption in geospatial health applications

• Fostering interdisciplinary/stakeholder collaboration and user engagement: Addressing the challenges and realizing the full potential of gen-
erative AI in geospatial and environmental health requires interdisciplinary collaboration among various researchers, policymakers, practition-
ers, and the public. Collaboration between AI developers, geospatial scientists, and public health experts has already shown success in projects 
like the Malaria Atlas Project. This initiative brought together expertise across disciplines to map disease patterns and inform targeted public health 
interventions, demonstrating the innovation that can be reached through interdisciplinary efforts
• Mitigating LLM hallucinations: Ensuring faithfulness of results by mitigating or eliminating LLM hallucinations is of critical importance for many appli-
cations, especially those that could pose a threat to human health if inaccurate or incomplete information is generated and used. For generative AI 
tools to be safely and effectively integrated into mainstream health and healthcare, substantial technological advancements and mitigation strategies 
towards hallucination elimination are necessary
• Ethical and unbiased generative AI deployment: Establishing a framework for ethical and unbiased generative AI deployment is essential, such 
as adopting principles of transparency, accountability, and inclusivity. Engaging local communities in AI initiatives ensures that solutions are contextu-
ally relevant and inclusive
• Open data and open-source tools: Promoting open data sharing and developing open-source models and tools can accelerate the development 
and deployment of generative AI-powered, geospatial scalable and cost-effective solutions. Such tools would allow researchers and policymakers 
in low-resource settings to harness the power of advanced geospatial technologies, enabling data-driven decisions to improve public and environ-
mental health outcomes
• Promoting AI literacy, education and training: Investing in education and training material and courses to equip the next generation of researchers 
and practitioners with the skills and knowledge necessary to develop and implement effective generative AI-powered geospatial health solu-
tions is equally important. As AI continues to advance, it is of paramount importance for all relevant researchers and practitioners to be offered 
regular access to suitable training opportunities to allow them to stay informed and continuously adapt their methods to emerging technologies 
and approaches
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interactive model refinement, where users can itera-
tively improve results by specifying relevant features 
or requesting tailored explanations. Thus, geospatial 
question answering serves as an intuitive interface 
between human expertise and machine intelligence, 
making it a powerful method for decision support in 
spatial health analysis. This integration of generative 
AI with geospatial analytics marks a significant step 
toward democratising spatial data science and expand-
ing its utility across disciplines.

Training data enhancement and XAI
Generative AI for spatial data presents transformative 
opportunities by enhancing both the size and quality 
of training datasets, ultimately improving predictive 
performance. Many geospatial applications suffer from 
data sparsity, noise, and biases, limiting the effective-
ness of traditional machine learning approaches. By 
synthesising realistic spatial data, generative AI can 
address these challenges by augmenting existing data-
sets, filling gaps in underrepresented areas, and refin-
ing label quality. This is particularly valuable for many 
problems in health surveillance, where high-quality 
labelled datasets are typically scarce and expensive to 
acquire. Furthermore, generative AI can create coun-
terfactual scenarios to assess policy impacts, simu-
late climate change effects, or explore urban growth 
under different conditions. These capabilities not 
only enhance model robustness, but also enable more 
comprehensive and fair analysis, paving the way for 
more reliable geospatial AI in scientific research and 
policy-making.

Despite these advancements, a critical challenge in 
geospatial AI remains the explainability, transparency, 
and interpretability of a model’s learning process and its 
outputs. The complex, high-dimensional nature of spa-
tial data—combined with the opacity of deep learning 
models—makes it difficult to understand how predic-
tions are generated and which spatial factors influence 
its outcomes. This lack of interpretability poses risks in 
high-stakes applications, such as targeted response to 
an epidemic or health policy-making, where decision-
makers require trustworthy AI-driven insights. Address-
ing this issue requires the development of XAI methods 
tailored to geospatial contexts, including spatial attention 
maps, interpretable embeddings, and post-hoc explana-
tion techniques. Furthermore, transparency in training 
data, model architecture, and decision-making processes 
is essential to ensure fairness and accountability. By 
advancing explainability, transparency and interpretabil-
ity in geospatial AI, researchers can foster trust, improve 
user adoption, and ensure that spatial models are aligned 
with ethical and scientific standards.

Multimodal geospatial foundation models
To effectively leverage FMs in geospatial health, future 
research needs to focus on developing multimodal, geo-
spatially enhanced models that can handle diverse types 
of data including text, numbers, images and time while 
incorporating geographic space. Spatially explicit learn-
ing could address the challenges of spatial dependen-
cies and heterogeneity in health data. Fine-tuned FMs 
could then be used for diverse health applications, from 
dialogue-based question answering to incidence predic-
tion. Pre-training on high-quality, diverse datasets is 
crucial for ensuring credibility and minimal bias. In this 
context, synthetic data generation offers a potential solu-
tion to data scarcity, though multimodal data genera-
tion and trustworthiness remain a challenge. FMs can be 
effectively used for data generation in this context but 
also benefit from it. A suitable setting for combining the 
two could be self-supervised learning. Another avenue 
for future studies concerns human-in-the-loop learning 
techniques like active learning.

Sigma Geography is a first step in this direction. 
Released in 2024 by a team of researchers from China’s 
Institute of Geographic Sciences and Natural Resources 
Research (IGSNRR) and other organizations, all under 
the Chinese Academy of Sciences, and touted as "the 
world’s first multimodal geographic science model" with 
a better understanding of the language patterns, domain-
specific terminology and professional knowledge in the 
field of geography compared with general purpose LLMs, 
Sigma Geography can answer professional geographic 
questions, analyse geographic literature, query geo-
graphic data resources, and create thematic maps. It can 
also pair its generated text responses with geographical 
landscape images, thematic maps, or schematic charts 
to provide users with a more visual understanding of the 
information [119].

Credibility and usability
As the complexity of models grow, future research efforts 
must also focus on ensuring that outputs are credible and 
align with user expectations. Simultaneously, reducing 
geographic or other biases in both the training data and 
model output should be of utmost importance. Addition-
ally, future research needs to concentrate on debiasing 
training data and evaluating potential biases learned by 
the model. Furthermore, techniques for preserving pri-
vacy in geospatial FMs are essential to protect sensitive 
health data from disclosure, especially under adversarial 
attacks. Security and privacy thus present another avenue 
for future research.

Even with once these challenges are solved, the effec-
tive use and interaction with geospatial FMs remains a 
key challenge. Recent years have been characterised by 
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generative AI systems that provide dialogue-based ques-
tion answering capabilities through natural language-
based interaction. The respective output can contain 
explanations, code, classification labels, prediction val-
ues or feature relevance. However, with geospatial and 
multimodal capabilities, models are not limited to tex-
tual interaction, opening up avenues for more nuanced 
interaction that also includes visual elements like maps 
and charts, video or even audio. This enables responses 
that are specifically tailored to the user, allowing for more 
detailed insights, better understanding of the problem at 
hand and improved decision-making.

New architectures
To date, transformers have achieved impressive results, 
but not without many flaws and limitations. Alterna-
tive methods, such as JEPA (Joint Embedding Predictive 
Architecture), are currently being explored to enable AI 
to attain human-level intelligence [120].

Recommendations and conclusions
The rapid rise of generative AI models presents a unique 
opportunity to revolutionise geospatial health and envi-
ronmental health. Notable applications include the use 
of satellite data to predict malaria outbreaks, leveraging 
the multimodal nature of large data sources like geo-
social media data as a basis for large-scale early warning 
systems, or AI-powered dashboards to manage epidem-
ics for efficient and targeted decision-making. By inte-
grating spatial analysis with AI-driven insights, these 
technologies can address complex challenges, including 
health surveillance or monitoring the spread of a specific 
disease.  Advanced AI agents are already showing great 
potential and will be increasingly contributing to this 
vital integration in the coming months and years.

However, their adoption must be guided by faithful-
ness, ethical principles, inclusiveness, and sustainability 
to ensure a positive impact on society (Table 1). Address-
ing the challenges and embracing the opportunities will 
require continued innovation, collaboration, and a com-
mitment to ethical and responsible development. By har-
nessing the power of these technologies, we can develop 
more effective health surveillance systems, improve 
public health outcomes, mitigate the impacts of newly 
emerging diseases, and create a more resilient health 
system.
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