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Abstract
Background  Past epidemiological studies, using fixed-site outdoor air pollution measurements as a proxy for 
participants’ exposure, might have suffered from exposure misclassification.

Methods  In the MobiliSense study, personal exposures to ozone (O3), nitrogen dioxide (NO2), and particles with 
aerodynamic diameters below 2.5 μm (PM2.5) were monitored with a personal air quality monitor. All the spatial 
location points collected with a personal GPS receiver and mobility survey were used to retrieve background 
hourly concentrations of air pollutants from the nearest Airparif monitoring station. We modeled 851,343 min-level 
observations from 246 participants.

Results  Visited places including the residence contributed the majority of the minute-level observations, 93.0%, 
followed by active transport (3.4%), and the rest were from on-road and rail transport, 2.4% and 1.1%, respectively. 
Comparison of personal exposures and station-measured concentrations for each individual indicated low Spearman 
correlations for NO2 (median across participants: 0.23), O3 (median: 0.21), and PM2.5 (median: 0.27), with varying 
levels of correlation by microenvironments (ranging from 0.06 to 0.35 according to the microenvironment). Results 
from mixed-effect models indicated that personal exposure was very weakly explained by station-measured 
concentrations (R2 < 0.07) for all air pollutants. The R2 for only a few models was higher than 0.15, namely for O3 in 
the active transport microenvironment (R2: 0.25) and for PM2.5 in active transport (R2: 0.16) and in the separated rail 
transport microenvironment (R2: 0.20). Model fit slightly increased with decreasing distance between participants’ 
location and the nearest monitoring station.

Conclusions  Our results demonstrated a relatively low correlation between personal exposure and station-measured 
air pollutants, confirming that station-measured concentrations as proxies of personal exposures can lead to 
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Introduction
Measurement error or exposure misclassification is a 
challenge in air pollution epidemiology. Accurate mea-
surement of air pollution exposure over a continuous 
period is complex and error-prone. Furthermore, precise 
ways to measure air pollution exposure minimizing noise 
are unavailable or widely impractical in extensive studies. 
A number of epidemiological studies in the past assessed 
air quality levels within a specified geographical area and 
assigned them to subjects living in that area to estimate 
the air pollution-related adverse health effects [1, 14, 54]. 
Another commonly used method in those studies was to 
assign nearby fixed station-monitored air quality levels as 
a proxy for individual exposure [7, 13, 31]; M et al., 2019 
[37]. Although these fixed measurement techniques meet 
regulatory requirements and provide accuracy and pre-
cision, the high cost and maintenance requirements of 
these stations make it difficult to install a dense network 
of monitors within an area. Consequently, this approach 
might not precisely capture the variation in air pollutants 
within a city or provide sufficient resolution for epidemi-
ological studies [17].

While results remain far from conclusive [55], several 
studies using fixed station-monitored ambient measure-
ments have documented positive associations of air pol-
lution exposure with adverse health events [12]; Y.-M. 
Liu & Ao [35, 52, 54],. However, this technique of using 
fixed station-monitored air quality levels ignores the spa-
tial and temporal variations in exposure for each person. 
These variations, resulting from individuals’ mobility pat-
terns, transitions between microenvironments with vary-
ing pollution sources, and other life circumstances, may 
often exceed those captured at fixed stations [20, 34, 40]. 
In addition, the impact of switching between microenvi-
ronments or between indoor sources results in variabil-
ity in personal exposure over time that is not correlated 
with the variation in outdoor air pollution levels. Epide-
miological studies using fixed station-monitored ambient 
concentrations as a proxy for personal exposure therefore 
suffer from exposure misclassification [55]. It is well-
established that ignorance of exposure misclassification 
in epidemiological studies may lead to biased estima-
tion or incorrect inference [5, 50]. Also, the bias can be 
towards the null or away from it, depending on the direc-
tion and magnitude of the exposure misclassification 
among diseased and non-diseased people [48, 53].

Recent studies on air pollution have found that within 
city variations in traffic emitted pollutants, such as nitro-
gen dioxide (NO2), black carbon, and particles with 

aerodynamic diameters below 2.5 μm (PM2.5), are higher 
than variations between cities [30, 56]. For example, a 
study in the UK illustrated that NO2 measured at two 
points that were 50  m apart differed by a two to three-
fold ratio in concentration [25]. A review including 18 
studies concluded that the correlation coefficient ranged 
between 0.09 and 0.83 (median: 0.56) between fixed 
station-monitored and personally measured PM2.5 [2]. 
Likewise, another study conducted in 2017 (March-June) 
revealed that the correlation between station-monitored 
and personal sensor-monitored PM2.5 was poor (R2 of 
0.18–0.32) in non-laboratory settings [45]. The low mag-
nitude of correlation suggests that portable sensors are 
useful for reducing the magnitude of error in exposure 
classification by continuously monitoring person-level 
exposure [40, 46], which is critical for the estimation of 
unbiased associations between air pollution exposure 
and health outcomes [4]. In addition, using air quality 
sensors allows researchers to access air quality-related 
information in real-time [16, 38], which may be useful in 
specific projects.

In this study, we compare two approaches for estimat-
ing exposure to 3 air pollutants (i.e., PM2.5, NO2, and 
ozone (O3)): (1) minute-level concentrations measured 
with a personal air quality monitor (PAM), and (2) hourly 
ambient concentrations recorded by a nearby fixed sta-
tion. We hypothesize that the accuracy of background air 
quality levels, reported by nearby fixed stations, in rep-
resenting personal exposure may depend on the type of 
microenvironment in which the participant is and their 
distance from the fixed station. Thus, we aim to compare 
personal exposure levels with station-monitored air pol-
lutants across different microenvironments to provide 
insights into the magnitude and determinants of misclas-
sification—a topic that has not been explored before.

Methods
Data for this study come from the MobiliSense study 
wave 1, conducted in the Grand Paris, France (Paris City 
and some surrounding municipalities) from May 2018 
to October 2020. Participants were recruited through a 
two-stage stratified random sampling procedure. In the 
first stage, neighbourhoods were randomly selected from 
the first and last quartiles of neighbourhood road traffic 
density within each quartile of neighbourhood income. 
In the second stage, dwelling units were randomly 
selected within the pre-selected neighbourhoods. The 
sampling method and participant recruitment process 
are described in further detail in our previous publication 

exposure misclassification. However, distance and the type of microenvironment are shown to affect the extent of 
misclassification.
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[10]. In total, 289 participants agreed to participate in the 
study. Out of 289 participants, 6 abandoned during the 
study, 2 did not participate in the mobility survey, and air 
pollution data could not be retrieved for 35 participants 
due to PAM failure, resulting in 246 actual participants.

Data collection and processing
Time-activity profiles
GPS data collected at a 5-sec resolution with BT-
Q1000XT GPS receivers were processed with the Trip-
Builder Web mapping application [51] in order to identify 
places visited by individuals, their trips, and the transport 
modes used in each trip. The detail of the algorithms is 
discussed in our previous publication [3, 9]. The start 
and end times of trip stages and stays at visited places, 
obtained from the processed GPS data, were cross-veri-
fied with participants during a mobility survey conducted 
over the phone. This survey permitted to add and correct 
information related to those trips and visited places that 
were incorrectly assessed with the GPS receiver. Also, 
missing or incomplete trips were manually added during 
the mobility survey (see Appendix 2).

Personal exposure to gaseous pollutants and PM2.5
PAM with electrochemical sensors was used to moni-
tor NO2 and O3 at 10-sec resolution, later aggregated 
at the minute level. Meanwhile, PM2.5 was measured at 
1 min resolution with an optical particle counter. These 
air pollutants were simultaneously measured during our 
study on the 1st, 2nd, 5th and 6th days (over a 6-day 
monitoring period). The performance of the PAMs was 

characterized in outdoor co-locations with reference 
instruments, as described in Appendix 1, adopting the 
methodology described by Chatzidiakou and colleagues 
in 2019 [11]. These co-locations also permitted to derive 
calibration equations for air pollutant concentrations 
considering temperature and cross-sensitivity between 
gases (Appendix 1).

Fixed station-monitored concentrations of air pollutants
Station-monitored PM2.5, NO2, and O3 concentrations 
were extracted at an hourly level for all the geographic 
coordinates continuously recorded with GPS receiv-
ers and mobility survey (i.e., for all individual location 
points, as explained above and in Appendix 2 by match-
ing their timestamps to those reported by the nearest 
Airparif air quality monitoring station. We then assigned 
those hourly values to all the spatial location (GPS and 
mobility survey) points of the corresponding hours to 
acquire the minute-level observations. For example, the 
station measurement reported at 10:00 am was assigned 
to all location points between 10:00 and 10:59 am, if the 
station remained the closest one. The location of the fixed 
monitoring stations as well as the participants’ residential 
locations are illustrated in Fig. 1.

Integration of the databases
We first deleted the extreme values in sensor air pol-
lution measurements that might have resulted from 
mechanical shocks, meteorological influence, or device 
error [NO2 (n = 771), O3 (n = 807), and PM2.5 (n = 5219)], 
resulting in 851,343  min-level observations from 246 

Fig. 1  Distribution of air pollution monitoring stations across our study area (Grand Paris)
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participants. The sensor-measured NO2, O3, and PM2.5 
concentrations were aggregated at the minute level and 
merged with the station-measured concentrations of the 
corresponding pollutants using the timestamps. Obser-
vations at the minute level were classified into four differ-
ent microenvironments using participants’ time-activity 
profiles (Sect. 2.1.1). The four unique microenvironments 
were: visited places (home and out-of-home), active 
transport (walking, biking, and skating), on-road motor-
ized vehicles (tramway, bus, taxi, and private motorized 
vehicles), and separated rail networks (metros and sub-
urban trains).

Statistical analyses
Descriptive analyses
We calculated the percentage of station-monitored air 
pollution concentrations that were higher than personal 
exposure concentrations at the minute level. In order to 
compare the distribution and not only the absolute con-
centrations of air pollutants, we classified measurements 
from both approaches into four quartiles (according to 
the same cut-offs values for the two distributions) and 
calculated the percentage of personal exposure measure-
ments being in the same quartile or being in a higher or 
lower quartile than station-monitored measurements. 
This analysis was performed at a global level (i.e., includ-
ing data from the whole sample) and stratified by micro-
environments as well.

Statistical analyses
We first compared the distributions of station-monitored 
concentrations and personal exposures to air pollut-
ants graphically by microenvironment using box plots, 
followed by paired Wilcoxon tests. In the presence of 
repeated measurements per participant, Spearman’s cor-
relation was estimated for each participant separately, 
describing the within-individual associations between 
personal and station-measured air pollutants. In order to 
accurately quantify the variability of correlations across 
participants, the median along with the 2.5th percentile 
and 97.5th percentile of these within-person correlation 
coefficients were calculated at the global and microen-
vironment level. Mixed-effect regression models were 
employed to associate the fixed-station ambient measure-
ments with personal exposures as the outcome, with sta-
tion-monitored concentrations modeled as a fixed effect 
and participants modeled as a random effect. While the 
slope in these models corresponds to the strength of the 
relationship between the station-monitored concentra-
tion and the personal exposure, the intercept is a con-
stant referring to the gap in concentrations between the 
fixed-station ambient measurements and the personal 
measurements. Additionally, we calculated the coeffi-
cient of determination (R2) using a method developed by 

Nakagawa & Schielzeth 2017 [39] for random intercept 
mixed models. In addition to the global analysis, we strat-
ified our analyses by microenvironments. All the analyses 
were done at the minute level. R software (version 4.0.3) 
was used for all the statistical processing/analyses, while 
ArcMap 10.8.1 was used for processing geographic points 
and drawing maps.

Sensitivity analyses
We also estimated the mixed-effect regression models 
associating the fixed-station ambient measurements with 
personal exposures on the datasets created by retain-
ing observation points that were at the most at 10  km 
and 5  km from the nearest fixed-station, as explained 
in Sect.  2.1.3 We calculated the R2 from each model to 
determine how the variability in personal exposure 
was explained by fixed-station measured air pollution 
concentrations.

Results
Participants’ characteristics and behaviours
Among the 246 participants, 57% were women. Partici-
pants were 50 years old on average (range: 33, 67 years). 
22% were living in Paris, and the rest in the suburbs; 70% 
had a higher diploma than high school, while 5% had 
lower educational attainment than a high school diploma: 
66% of participants had a permanent job, 3% were unem-
ployed, and 12% were retired. Therefore, although our 
sample is not representative of the background popu-
lation, it includes a substantial diversity of individual 
profiles.

Over the 57.7  h contributed on average by each par-
ticipant, a participant spent 2  h in active transport, 1  h 
and 52  min commuting with on-road transport, 53  h 
and 40  min in places (indoor and fixed outdoor places, 
including the residence), and 1 h and 21 min commuting 
with rail networks. In other words, most study observa-
tions (93.0%) were from places, followed by active trans-
port (3.4%), and the rest were from on-road and rail 
transport, 2.4% and 1.1%, respectively.

Descriptive statistics
Descriptive statistics [median (2.5th percentile, 97.5th 
percentile)] on station-monitored and personal exposure 
to air pollutants are reported in Table A2. Station-moni-
tored concentration was always greater than the personal 
concentration measured with the sensor regardless of the 
microenvironment visited (Fig.  2 and Appendix Figures 
A1-A3), except for O3 in active transport, where the dis-
tributions of station-monitored and personal exposure 
were fully overlapping (Figure A2). Although the median 
for station-monitored PM2.5 concentrations were slightly 
greater than that for personal concentrations in separated 
rail transport, their distribution was largely overlapping 
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(Figure A3). Above 60% of the station-monitored con-
centrations for NO2 and O3 were greater than the cor-
responding personally measured concentrations across 
all microenvironments at the minute level, except for O3 
in active transport where this percentage was only 42% 
(Table A3). For PM2.5, station-monitored concentrations 
were higher in more than 80% of the observations in 
every microenvironment, except in separated rail trans-
port (65%) (Appendix Table A3).

The median of the ratio between station-monitored 
and personal concentrations across all observations 
from the participants ranges from 1.49 (on-road motor-
ized) to 2.03 (active transport) for NO2, from 0.90 (active 
transport) to 1.59 (places visited) for O3, and from 1.35 
(separated rail transport) to 3.33 (places visited) for PM2.5 
across the microenvironments (Table  1). For all the air 
pollutants, almost one-third of the personal exposures 
fell into the exact same quartile than station-monitored 
exposures, while another third was either higher or lower 

than station-monitored exposures (Appendix Figures 
A4-A7).

Main findings
Correlation between sensor and station-measured air 
pollutants
There was a great deal of inter-subject variability in the 
participant-specific air pollutant correlations between 
station-measured and personal concentrations, with 
most participants having weak and even negative cor-
relations. For the global and stratified correlation analy-
ses, the 2.5th and 97.5th percentiles of the correlation 
coefficient ranged from negative to positive for all air 
pollutants. In the global analysis, the median of the sub-
ject-specific correlation coefficients (between station-
measured and personal concentrations) were comparable 
across air pollutants (Table 2). In the stratified analyses, 
a relatively strong within-person correlation coefficient 

Table 1  Ratio [median (2.5th percentile, 97.5th percentile) across 
participants] of station-monitored vs. personal exposure to air 
pollution at the minute level by microenvironments

NO2 O3 PM2.5

Microenvironments
Active transport (N = 231, 
n = 28869)

2.03 (0.34, 
21.15)

0.90 (0.06, 
4.51)

2.40 (0.43, 
13.33)

On-road motorized transport 
(N = 183, n = 20623)

1.49 (0.24, 
15.18)

1.55 (0.03, 
8.35)

2.93 (0.43, 
16.30)

Places visited (N = 246, 
n = 792546)

1.94 (0.33, 
13.46)

1.59 (0.04, 
5.37)

3.33 (0.33, 
18.20)

Separated rail transport 
(N = 113, n = 9305)

1.61 (0.34, 
14.26)

1.42 (0.04, 
6.99)

1.35 (0.27, 
12.30)

Pooled (N = 246, n = 851343) 1.93 (0.32, 
14.19)

1.56 (0.04, 
5.41)

3.26 (0.33, 
17.89)

N: number of participants, n: number of minute-level observations

Table 2  Within-subject Spearman’s correlation coefficient 
[median (2.5th percentile, 97.5th percentile) across participants] 
between the station-monitored and personal exposure to air 
pollutants at the minute level by microenvironments

NO2 O3 PM2.5

Microenvironments
Active transport (N = 231, 
n = 28869)

0.25 (-0.52, 
0.79)

0.33 (-0.63, 
0.79)

0.35 (-0.67, 
0.87)

On-road motorized transport 
(N = 183, n = 20623)

0.06 (-0.87, 
0.77)

0.09 (-0.82, 
0.79)

0.29 (-0.65, 
0.86)

Places visited (N = 246, 
n = 792546)

0.23 (-0.30, 
0.65)

0.20 (-0.38, 
0.65)

0.26 (-0.32, 
0.78)

Separated rail transport 
(N = 113, n = 9305)

0.08 (-0.64, 
0.71)

0.23 (-0.49, 
0.80)

0.19 (-0.70, 
0.85)

Pooled (N = 246, n = 851343) 0.23 (-0.27, 
0.61)

0.21 (-0.35, 
0.63)

0.27 (-0.28, 
0.76)

N: number of participants, n: number of minute-level observations

Fig. 2  Comparison of the distribution of station-monitored and personal exposure to air pollutants at the minute level
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was documented for NO2 in active transport (median: 
0.25) followed by places visited (median: 0.23), whereas 
the coefficients were comparatively weak for separated 
rail transport (median: 0.08) and on-road motorized 
transport (median: 0.06) microenvironments. For O3, 
the median of station-personal correlation coefficients 
across participants ranged between 0.20 (for places vis-
ited) and 0.33 (for active transport) across the microen-
vironments, except for on-road motorized transport, for 
which it was 0.09. For PM2.5, the microenvironment-spe-
cific median correlation coefficients varied from 0.19 to 
0.35, with separated rail transport having the lowest and 
active transport having the highest median correlation 
coefficients.

Associations of station-measured with sensor-measured air 
pollutants
The slopes of the station-personal NO2 associations were 
less than 0.20 across all the microenvironments, with R2 
less than 0.10 (Table  3). Similar estimates were docu-
mented for O3, except for the active transport microen-
vironment, where the slope was 0.48 and R2 was 0.25. For 
PM2.5, a relatively higher slope between the station and 
personal exposure was observed for separated rail trans-
port, 0.50, with a R2 of 0.20, followed by active transport 
(slope: 0.35 and R2: 0.16).

Sensitivity analyses
Even though the R2 for all the pollutants in the global 
analyses remained comparable to the main analyses 
(global analysis in the whole sample) when choosing 
10  km as a cutoff for the distance between the station 
and the participants’ location points (Appendix Table 
A4), there was a slight increment in the R2 with 5 km as a 
cutoff (Table A5). Regarding the microenvironment level 

analyses, when using 10 km cutoff, the R2 for all the air 
pollutants improved slightly in active transport and on-
road motorized transport compared to the main analyses, 
while it did not change much in other microenviron-
ments (Table A4). In the analyses with a 5 km cutoff, the 
R2 for all air pollutants increased in the active transport, 
places visited, and rail transport microenvironments 
compared to the main analyses and to the analysis done 
with a 10  km cutoff, except for PM2.5 for which the R2 
decreased slightly in active transport and rail transport 
(Appendix Table A5).

Discussion
We found that the air pollution concentrations recorded 
at the nearby fixed stations were consistently higher than 
those captured with a personal air quality sensor. These 
findings agreed with the findings from Sarnat et al. and 
other studies [19, 32, 43, 44]. In contrast, these results 
conflicted with other studies reporting that the personal 
exposures to PM2.5 [27, 28, 41, 45] and NO2 [8, 27] were 
higher than those measured by nearby fixed stations. 
However, these studies did not stratify their analyses by 
microenvironments. Consistent with previous findings 
[8, 32, 43–45], correlations between personal exposures 
and station-monitored concentrations for NO2, O3, and 
PM2.5 were weak with low coefficient values (< 0.35), sug-
gesting that fixed-station ambient measurements may 
not be usable as accurate surrogates of personal exposure 
while estimating their health impact. It is to be noted 
that the magnitude of correlation varied considerably 
between participants, even for the same microenviron-
ment, ranging from large negative to large positive coef-
ficients, indicating that the characteristics of exposure 
to air pollutants were not constant across study partici-
pants. In addition, it indicates that personal exposures 

Table 3  Associations of station-measured air pollutants (95% CI) with personally measured air pollutant concentrations at the 
microenvironment levela

NO2 O3 PM2.5

Slope Intercept R2 Slope Intercept R2 Slope Intercept R2

Microenvironments
Active transport (N = 231, n = 28869) 0.18 (0.18, 

0.19)
15.32 (14.04, 
16.60)

0.08 0.48 (0.47, 
0.49)

25.56 (23.49, 
27.64)

0.25 0.35 (0.35, 
0.36)

2.56 (1.84, 
3.28)

0.16

On-road motorized transport (N = 183, 
n = 20623)

0.05 (0.04, 
0.06)

30.01 (27.85, 
32.17)

0.00 0.12 (0.11, 
0.13)

24.49 (22.67, 
26.32)

0.04 0.19 (0.19, 
0.20)

3.83 (2.92, 
4.75)

0.06

Places visited (N = 246, n = 792546) 0.08 (0.08, 
0.08)

17.72 (17.00, 
18.43)

0.05 0.11 (0.11, 
0.12)

23.17 (21.99, 
24.34)

0.06 0.15 (0.15, 
0.16)

3.95 (3.18, 
4.72)

0.04

Separated rail transport (N = 113, n = 9305) 0.07 (0.06, 
0.08)

31.94 (29.63, 
34.25)

0.01 0.18 (0.17, 
0.20)

22.29 (20.30, 
24.28)

0.11 0.50 (0.48, 
0.52)

4.51 (3.20, 
5.83)

0.20

Pooled (N = 246, n = 851343) 0.09 (0.09, 
0.09)

17.89 (17.16, 
18.61)

0.05 0.13 (0.13, 
0.14)

23.06 (21.89, 
24.22)

0.07 0.17 (0.16, 
0.17)

3.93 (3.17, 
4.70)

0.04

CI: confidence interval
aThe multilevel linear models included a random effect at the individual level

R2: Coefficient of determination

N: number of participants, n: number of minute-level observations
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may be predicted for a specific individual but not across 
the group of participants.

Similar to the findings from a previous study [21], the 
use of ambient station-measured concentrations in a 
regression model did not explain much of the variabil-
ity in personal exposure in the global analysis (R2 < 0.05). 
However, there was a slight improvement in the model 
fitness, i.e., R2, when modeling the associations at the 
microenvironment level, especially for O3 and PM2.5 in 
active transport microenvironment and PM2.5 in sepa-
rated rail transport. While most epidemiological studies 
directly use nearby fixed-station ambient measurements 
to surrogate personal exposure, this study focused 
on determining the total variability in this exposure 
explained by station-measured concentrations alone. 
Nevertheless, some studies suggest that adding informa-
tion on exposure to cooking and environmental tobacco 
smoke [15, 21, 47], dwelling characteristics (volume of 
the house [21], nature/use of ventilation [26, 44], time 
spent in open spaces/indoors [21, 36], and meteorological 
variables [41, 49] along with station-measured concentra-
tions may improve the fitness of the model predicting 
personal exposure. However, we had a distinct goal in the 
present study, i.e., comparing the concentrations rather 
than improving the prediction.

We found relatively strong correlations between station 
and personal air pollution measurements in the active 
transport and visited places microenvironments. This 
association might be explained by the fact that walking 
and biking are performed in open spaces, while visited 
places in our study were primarily open spaces or well-
ventilated shopping centers or apartments. Therefore, 
nearby air quality stations might be able, to some extent, 
to capture the exposure variability happening at the per-
sonal level in these microenvironments. Usually, on-road 
transport, especially private cars and taxis, is operated in 
short windows of time, preventing the outdoor air from 
entering. Also, they imply fast movement over a certain 
distance, which may decrease the correlation. In addition, 
air filters in these vehicles reduce the volume of air pol-
lutants entering from the outer environment, decreasing 
the air quality station’s ability to predict personal expo-
sure within this microenvironment, as in our study [22]. 
Out of 246 participants included in this specific study, 
141 had a registered car. The oldest vehicle was registered 
in 1972 and the most recent one in 2020. The median 
registration year was 2012, and the 10th and 90th percen-
tiles of registration year were 2003 and 2018. Although 
some of the participants’ vehicles were old, air filters in 
the more recent vehicles likely decreased the correlation 
between station-measured and personal air pollution.

Even if the combustion of fossil fuels does not power 
rails in our study area, PM2.5 from the outer environment 
may enter the underground space via the ventilation 

system, which is often located on the ground of roads, in 
addition to the particles emitted by the contact between 
the wheels and the rail and the brakes. Some PM2.5 com-
ponents, such as black carbon, have small diameters (less 
than 1 μm), making them hard to be efficiently blocked 
by the filters installed in metro and sub-urban trains [22]. 
It could contribute to explaining the comparatively stron-
ger correlation coefficients for PM2.5 in separated rail 
transport. The same explanation of filter capacity could 
hold for O3 in separated rail transport, even though it is 
secondary pollution. However, NO2 is not produced by 
rail transport and is negatively correlated with O3 [23]. 
This may explain the lower correlation coefficient for 
NO2 in the rail-transport microenvironment.

Overall, our findings are concordant with previous 
studies; however, several reasons can explain the discrep-
ancies between our findings and results from some other 
studies. One among them would be the study population; 
previous studies recruited patients with pulmonary dis-
ease [21, 42] or elderly subjects [44], children [33, 41], 
and patients with cardiovascular disease [24]. In contrast, 
we randomly recruited adults from the general popula-
tion. Exposure metrics of diseased people and children 
are incomparable with those of the general population 
due to differences in their activity patterns (mobility), 
such as where they go and what activity they perform at 
the visited place. Besides, several studies did not recruit 
human subjects, but rather placed the personal monitor 
close to a reference instrument or in a stationary place 
throughout the study period and checked the correlation 
between the two approaches [16, 18, 29, 45]. Since this 
experimental design completely ignores the mobility part, 
i.e., transitions between different microenvironments 
with varying pollution sources, a well-calibrated personal 
monitor can be expected to mirror the measurements 
reported by the reference device, with a high correlation. 
Another reason for potential discrepancy with previous 
literature is the technique of assessing exposure; most 
studies used daily averaged levels or sampled a measure-
ment once in 24 h [6, 18, 27, 41, 44, 45], or used hourly 
averaged concentrations [8, 34] without considering the 
share of the time spent in different microenvironments 
with different sources and their impact on the overall 
exposure. On the opposite, we considered measurement 
at a very high temporal resolution (at the minute level), 
considering participants’ mobility and minute-level pres-
ence in different microenvironments.

Strengths
While most studies confined their recruitment to older 
people, diseased populations, or children, our study ran-
domly selected participants from the healthy general 
public, making the findings more generalizable. Another 
strength of our study was that it included a relatively 
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large number of participants (n = 246), and a sufficient 
number of repeated measurements among them in dif-
ferent microenvironments, providing enough statistical 
power. To the best of our knowledge, our study is the first 
to report the associations between station and personal 
air pollution measurements at the minute level and strat-
ify the analyses by microenvironments visited.

Limitations
The first limitation of our work is that we chose 15  km 
as a maximum distance between the air pollution station 
and participants’ location points, which is wide enough 
to introduce exposure misclassification bias while using 
station-monitored ambient concentrations to estimate 
the personal exposure. Furthermore, about 97% and 22% 
of our observations were 5 km away or more and 10 km 
away or more from the nearby stations, respectively. Our 
findings may also be relevant to studies using measure-
ments from a single station to represent the air pollution 
exposure of a large geographical area, a common method 
in previous epidemiological studies. Quantifying the level 
of exposure misclassification depending on the distance 
between a person’s current position and the nearby air 
quality station was out of the scope of this study. Never-
theless, we performed sensitivity analyses keeping only 
those observations within 10 km and 5 km from the near-
est fixed station. Although there was a slight improve-
ment in the R2 for all the pollutants while moving from a 
15 to a 5 km threshold, our findings should be used cau-
tiously, as we reduced our sample to almost 3% of its ini-
tial size while shifting from 15 to 5 km. However, future 
studies of this nature could fill in the gaps by assessing 
the degree of exposure misclassification at the personal 
level as a function of distance from the nearby fixed 
monitoring station, e.g., at 2 km, 3 km, and so on, with 
a larger sample than ours. Although our study included 
a large number of subjects and a long period of dense 
monitoring, there is still a need for improving the auto-
mation of the data collection process. The main bottle-
neck in our data collection process was the assessment 
of time-activity profiles. While the phone mobility sur-
vey provides a high-quality assignment of contexts to the 
measurements, it is lengthy and costly. To overcome this 
problem, one can use a sample of such annotated data as 
a gold standard for training a machine learning model 
along with expert rules to propagate the microenviron-
ment assignment, or novel smartphone technologies for 
the automatic collection of microenvironment data.

Conclusion
Personal monitoring allowed us to show that personal 
air pollutant exposure differs from exposure informa-
tion inferred from fixed-site ambient measurements. Our 
findings demonstrate that using fixed-station monitoring 

as a surrogate for personal exposure results in exposure 
misclassification. Our results suggest that epidemio-
logical studies based on short-term (minutes to an hour) 
station-measured ambient concentrations may have 
reported biased effect estimates for health, and that bet-
ter exposure surrogates are needed.
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